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Previous research supports the claim that human vision has three dimensions of sensitivity to grayscale
scrambles (textures composed of randomly scrambled mixtures of different grayscales). However, the
preattentive mechanisms (called here ‘‘field-capture channels’’) that confer this sensitivity remain
obscure. The current experiments sought to characterize the specific field-capture channels that confer
this sensitivity using a task in which the participant is required to detect the location of a small patch
of one type of grayscale scramble in an extended background of another type. Analysis of the results sup-
ports the existence of four field-capture channels: (1) the (previously characterized) ‘‘blackshot’’ channel,
sharply tuned to the blackest grayscales; (2) a (previously unknown) ‘‘gray-tuned’’ field-capture channel
whose sensitivity is zero for black rising sharply to maximum sensitivity for grayscales slightly darker
than mid-gray then decreasing to half-height for brighter grayscales; (3) an ‘‘up-ramped’’ channel whose
sensitivity is zero for black, increases linearly with increasing grayscale reaching a maximum near white;
(4) a (complementary) ‘‘down-ramped’’ channel whose sensitivity is maximal for black, decreases
linearly reaching a minimum near white. The sensitivity functions of field-capture channels (3) and (4)
are linearly dependent; thus, these four field-capture channels collectively confer sensitivity to a
3-dimensional space of histogram variations.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The standard back pocket model of preattentive texture seg-
mentation Chubb and Landy (1991) proposes that human vision
comprises a battery of image transformations, each of which con-
tinuously registers the time-varying distribution across the visual
field of a specific, spatially local image statistic. We shall refer to
image transformations of this sort as ‘‘field-capture’’ channels to
reflect the rapid, spatially parallel nature of the transformations
they perform. It is useful to think of field-capture channels as
‘‘measuring the amounts of various kinds of visual substances
present in the image’’ Adelson and Bergen (1991). From this point
of view, the output of a field-capture channel can be seen as a neu-
ral image Robson (1980) that reflects the spatial distribution of a
specific visual substance for further processing by higher level
vision.

Field-capture channels are conceptually akin to the ‘‘feature
maps’’ hypothesized to subserve visual search Treisman and
Gelade (1980). However, the term ‘‘feature map’’ might be taken
to suggest a process that flags (in an all-or-none fashion) the loca-
tions marked by some specific feature such as greenness or verti-
cality; by contrast, we conceptualize a field-capture channel as a
process likely to yield graded responses to a range of image prop-
erties that may not be definable in terms of any easily character-
ized feature.

1.1. Grayscale scrambles

The purpose of the current experiment is to analyze the field-
capture channels in human vision that are differentially sensitive
to a class of textures called grayscale scrambles. Several examples
of grayscale scrambles are shown in Fig. 1.

A grayscale scramble consists of a densely packed array of small
squares called ‘‘texels’’ (short for ‘‘texture elements’’), each painted
with a grayscale drawn from a fixed set X. (In our experiments X
comprises 9 grayscales linearly increasing in luminance from black
to white.) The histogram of a scramble is the probability distribu-
tion p(x) that gives the proportion of different squares painted
grayscale x in the scramble. It will sometimes be convenient to
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Fig. 1. Examples of grayscale scrambles. Scrambles with histograms (a) U, (b) U þ k1,
(c) U � k1, (d) U þ k2, (e) U � k2 (f) U þ k3, (g) U � k3, (h) U þ k4, (i) U � k4. The inset
in each patch of scramble gives the histogram of that scramble.
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refer to a scramble with histogram p as a ‘‘p-scramble’’ (as in the
following sentence). To generate a p-scramble comprising N spatial
squares it suffices to

1. fill a virtual urn with N grayscales whose proportions conform
to histogram p and then

2. assign these grayscales randomly from the urn without
replacement.

The result is a spatially random texture with precisely the pre-
scribed histogram p.1

It will be convenient to write U for the uniform histogram; i.e.,
UðxÞ ¼ 1

9 for all x 2 X. In addition, any function q : X! R is called
a perturbation if U þ q and U � q are both probability distributions.
If the maximum absolute value of q is 1

9, then for any scalar A
greater than 1, either U þ Aq or else U � Aq will fail to be a proba-
bility distribution; in this case, q is called maximal.

From the fact that U þ q is a probability distribution, it follows
thatX
x2X

qðxÞ ¼ 0: ð1Þ

Any function satisfying Eq. (1) is said to ‘‘sum to 0.’’
1 Chubb, Econopouly and Landy (1994) used IID textures rather than grayscale
scrambles. The difference between an IID texture vs a grayscale scramble is that
grayscales are assigned in an IID texture with replacement rather than without
replacement as they are in a grayscale scramble. The key difference between a patch
of IID texture vs a patch of grayscale scramble is that the histogram of the IID patch is
likely to deviate from the histogram p that characterizes the grayscales in the urn.
1.2. The sensitivity function of a field-capture channel

We will assume that any field-capture channel that is differen-
tially sensitive to grayscale scrambles can be characterized by a
sensitivity function

FðxÞ ¼ C þ f ðxÞ ð2Þ

for some function f : X! R that sums to 0 and some scalar C suffi-
ciently large that FðxÞP 0 for all x 2 X. The constraint that F be
nonnegative reflects an assumption that the baseline firing rate of
the neurons used to implement any field-capture channel is 0 and
that activation of the field-capture channel is signaled exclusively
by firing rates increasing above this baseline level. The scalar C is
called the baseline constant and the function f is called the sensitiv-
ity modulator of the field-capture channel.

Under this assumption, the space-average activation produced
in the field-capture channel by a grayscale scramble with histo-
gram p is equal to

F � p ¼
X
x2X

FðxÞpðxÞ: ð3Þ

The difference in activation produced in the field-capture chan-
nel by scrambles with grayscale histograms p and q is
F � p� F � q ¼ F � d for d ¼ p� q; however, because d sums to 0, it
is easily seen that F � d ¼ f � d. Thus, the difference in activation
produced in any field-capture channel by any two scrambles
depends only on the sensitivity modulator of the field-capture
channel (not on its baseline constant). Note in particular that if
p ¼ U þ q and q ¼ U � q for some perturbation q, then the differ-
ence in activation is F � ðp� qÞ ¼ 2f � q.

1.3. The analogy to color perception

A useful analogy can be drawn to color perception. Under this
analogy,

� texels of different grayscales correspond to quanta of different
wavelengths,
� a scramble corresponds to a light,
� the histogram of the scramble corresponds to the spectrum of

the light,
� a scramble-sensitive field-capture channel corresponds to a

cone-class,
� the sensitivity function characterizing the field-capture channel

corresponds to the sensitivity function characterizing the cone-
class.

Let us flesh this analogy out in more detail and develop some of
its implications. Human vision comprises three cone-classes, the
S-cones, the M-cones and the L-cones, with sensitivity functions
FS; FM and FL. For any wavelength w; FSðwÞ; FMðwÞ and FLðwÞ reflect
the activation produced in S-, M- and L-cones by quanta of wave-
length w. The activations produced by a light with spectrum
HðwÞ in the S-, M- and L-cones are given by

FS � H ¼
Z

FSðwÞHðwÞdw; FM � H

¼
Z

FMðwÞHðwÞdw; and FL � H ¼
Z

FLðwÞHðwÞdw ð4Þ

where each of the integrals is over all wavelengths w of electromag-
netic radiation in the visible range (roughly 300–800 nm). Note that
Eq. (4) is precisely analogous to Eq. (3) except that the summation
in Eq. (3) has become an integral.

We assume, analogously, that human vision comprises some
number N of scramble-sensitive field-capture channels with sensi-
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tivity functions F1; F2; � � � ; FN . For any grayscale x; FkðxÞ reflects the
activation produced in the kth of these field-capture channels by
texels of grayscale x. The activations produced by a grayscale
scramble with histogram pðxÞ in these N field-capture channels
are

Fk � p; k ¼ 1;2; . . . ;N: ð5Þ

Lights with spectra H1 and H2 will appear identical to a human
observer if

FS � H1 ¼ FS � H2 and FM � H1 ¼ FM � H2 and
FL � H1 ¼ FL � H2: ð6Þ

In this case the lights are said to be ‘‘metameric.’’
Analogously scrambles with histograms p1 and p2 will be

‘‘preattentively equivalent’’ to human vision if

Fk � p1 ¼ Fk � p2 for k ¼ 1;2; . . . ;N: ð7Þ

The modifier ‘‘preattentively’’ in the phrase ‘‘preattentively equiva-
lent’’ is intended to indicate that even though no field-capture
channels are differentially activated by the two scrambles, it may
nonetheless be possible to use focal attention to identify a differ-
ence between the two textures. See Chubb et al. (in press) for a
dramatic example of metameric grayscale scrambles.

The analogy to color perception breaks down in one respect.
One can double the intensity of a light by doubling its quantal flux
at each wavelength; it is impossible, however, to increase the num-
ber of texture elements in some fixed area. In this regard, grayscale
scrambles are analogous to a space of lights whose spectra H may
differ in the proportions of different wavelength quanta they con-
tain but which are constrained to deliver to the eye the same fixed
total number of quanta per unit time.

1.4. Previous studies investigating discrimination of grayscale
scrambles

Although the current study will require us to amend this con-
clusion, a series of recent studies suggests that human vision has
three distinct field-capture channels selectively sensitive to gray-
scale scrambles (Chubb, Econopouly & Landy, 1994; Chubb,
Landy & Econopouly, 2004; Chubb, Nam, Bindman, & Sperling,
2007).

Let S be the space of all perturbations q for which the mean and
variance of U þ q are equal to the mean and variance of U. Chubb,
Econopouly and Landy (1994) showed that for any q 2 S, the prob-
ability of correctly judging the orientation of a square wave whose
bars alternated between scrambles with histograms U þ q vs U � q
was a psychometric function of j ~f � q j for a particular function
~f 2 S. They concluded that:

1. Sensitivity to scrambles differing in qualities other than mean
or variance is conferred primarily by a single field-capture
channel.

2. One or the other of ~f or �~f is the projection into S of the sensi-
tivity modulator of this field-capture channel.

Chubb, Landy and Econopouly (2004) measured the sensitivity
of this field-capture channel to variations in scramble mean and
variance, determining the sensitivity function modulator up to an
unknown sign. They discovered that this field-capture channel
was highly sensitive to the relative proportions of scramble
grayscales very near black (with Weber contrasts less than �0.9)
but was uninfluenced by variations in the proportions of other
grayscales. They called this field-capture channel the ‘‘blackshot’’
channel to reflect its sharp tuning to grayscale values very near
black.
Estimates of the blackshot sensitivity functions for three
observers are shown in Fig. 2. It should be noted, however, that
the plots in Fig. 2 embody several assumptions that have not been
definitively established by previous experiments. First, in assum-
ing that the blackshot channel responds positively to grayscales
near black, this figure assigns a sign to the modulator of the black-
shot sensitivity function. Second, in assuming that the blackshot
channel assigns values near 0 to grayscales other than black,
Fig. 2 assigns a particular value to the baseline constant of the
blackshot sensitivity function. The results of Chubb, Landy and
Econopouly (2004) establish neither the sign of the blackshot sen-
sitivity modulator nor the value of the blackshot baseline constant.

Chubb et al. (2007) sought to determine the number of field-
capture channels in human vision that are differentially sensitive
to grayscale scrambles. Their method hinged on the observation
that if human vision contains N field-capture channels differen-
tially sensitive to grayscale scrambles, then in any N þ 1 dimen-
sional space of perturbations, there must exist a maximal
perturbation q for which the scrambles with histograms U þ q vs
U � q are perceptually equivalent and hence for which preatten-
tive segregation is impossible. They tested five subspaces of pertur-
bations: the subspace spanned by the 1st, 2nd, 3rd and 4th order
Legendre polynomials (these are the perturbations k1; k2; k3 and
k4 used to produce the histograms of the grayscale scrambles
shown in Fig. 1) as well as each of the four subspaces spanned
by a subset of three of these four polynomials. For each subspace,
participants used an adjustment procedure to find the maximal
perturbation q in the given subspace such that the perceptual dif-
ference between the scrambles with histograms U þ q and U � q
was as weak as possible. Each of the five resulting minimal salience
perturbations q was then tested in a task in which the participant
was required to detect the location of a target patch of scramble
with histogram U þ q superimposed onto a background scramble
with histogram U � q.

Chubb et al. (2007) found that only the minimal salience pertur-
bation extracted from the subspace spanned by all four of k1; k2; k3

and k4 yielded chance performance in the location detection task;
the minimal salience perturbations extracted from each of the four
three-dimensional subspaces all yielded performance significantly
greater than chance in the location detection task. They accounted
for these findings by positing three field-capture channels differen-
tially sensitive to grayscale scrambles: one channel sensitive pri-
marily to mean scramble grayscale; another sensitive primarily
to grayscale variance, and the third (blackshot) channel sensitive
to grayscales very near black. However, they acknowledged that
although the three field-capture channels they posited sufficed to
account for their results, any set of field-capture channels with
sensitivity functions spanning the same space would work just as
well.

1.5. Open questions about grayscale scrambles

Little is known about the field-capture channels (other than the
blackshot channel) implicated by the experiments of Chubb et al.
(2007). The results of Chubb et al. (2007) support the conclusion
that human vision has three dimensions of sensitivity to grayscale
scrambles. Although it seems natural to jump from this observa-
tion to the conclusion that human vision comprises only three
field-capture channels that are differentially sensitive to grayscale
scrambles, this need not be true: it could be the case that human
vision has more than three such field-capture channels; if so,
however, then the sensitivity functions of these field-capture
channels must be linearly dependent. In fact, the ‘‘3D4C’’
(3-dimensional, 4-channel) model used below to fit the data from
the current experiment (Section 3.3) proposes a scenario of pre-
cisely this sort.



Fig. 2. Blackshot sensitivity function. The three functions shown give 7th order polynomial estimates of the blackshot sensitivity function for three different observers. It
should be noted that previous experimental methods define the blackshot sensitivity function only up to arbitrary additive and multiplicative constants. These functions have
been plotted under the assumption that the blackshot field-capture channel is activated by the darkest elements of the display (assigning a positive value to Weber contrast
�1) and is otherwise silent (assigning values very close to ‘‘0’’ to all but the blackest elements).

2 In the annular displays used in the current experiments, if the participant can
produce a search map that is more strongly activated by the target than by the
background, then the location of the target will be signaled directly and naturally by
the centroid of activation of the search map. There is ample evidence to support the
claim that centroid extraction is a low-level visual computation used to localize
targets in many contexts (Baud-Bovy & Soechting, 2001; Friedenberg & Liby, 2002;
McGowan, Kowler, Sharma, & Chubb, 1998). On the other hand, if the region of the
background is activated more strongly than the target in the search map, then the
centroid of the pattern of activation in the search map is unlikely to be very useful to
the participant in producing his/her response.

It might be argued that suppressed activation in the search map at the location of
the target carries just as much information as elevated activation. There are two
responses to this objection:
(a) If the pattern of activation produced by a scramble in a given field-capture channel

were spatially homogeneous, then this contention might have some force;
however, this is not the case. The response of a field-capture channel to a
scramble will inevitably be variable across space, and the variance of this signal is
likely to increase with mean activation. This means that the signal produced by a
field-capture channel that is more highly activated by the background scramble
than it is by the target scramble is likely to contain much less useful information
(even for an ideal observer) than is the signal produced by a field-capture channel
that is more highly activated by the target scramble than it is by the background
scramble.

(b) It is undoubtedly true that the suppressed activation in the search map at the
location of the target carries some potentially useful information; however,
unless the visual system can convert the ‘‘hole’’ in search-map activation into a
‘‘bump’’ in activation in some other neural population, it is difficult to see how
this information can be used to produce a response.
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Second, although it seems natural to assume that the blackshot
channel is positively activated by texture elements with grayscales
near black, previous experiments do not resolve the sign of the
modulator of the blackshot sensitivity function. The main reason
for this is that the task used in the previous experiments (a task
requiring the participant to judge the orientation of a scramble-
defined square wave grating) provides no traction in deciding
whether the blackshot channel is more highly activated by spatial
regions high in black elements or devoid of black elements.

1.6. Assumptions underlying the current experiments

Previous models offered to account for the results of experi-
ments in preattentive texture discrimination (e.g., Chubb,
Econopouly & Landy, 1994; Chubb, Landy & Econopouly, 2004;
Chubb et al., 2007; Victor, Chubb & Conte, 2005) have assumed:

1. A given texture A operates in a bottom-up fashion to produce a
vector aA of activations in the different field-capture channels in
human vision.

2. The salience of the difference between textures A vs B is given
by some distance DðaA;aBÞ.

3. Probability correct in any choice task requiring the participant
to discriminate textures A vs B is given by some psychometric
function of DðaA;aBÞ.

Note that under this model, there is no room for top-down
attention to influence performance in any given texture discrimi-
nation task. Nor does this model admit the possibility that perfor-
mance can be influenced by swapping the spatial roles of textures
A vs B within the stimulus. Consequently, previous experiments
have tended to use paradigms in which different texture discrimi-
nation conditions were mixed within blocks (e.g., Victor, Chubb &
Conte, 2005), the effect of which is to minimize any effects due to
variations in the attentional state of the participant. Previous
experiments have also tended to use stimulus displays in which
the two textures to be discriminated on a given trial played spa-
tially symmetric roles (e.g., Chubb, Econopouly & Landy, 1994),
the effect of which is to insure that performance will be invariant
with respect to swapping the roles of the textures A and B in the
stimulus.

By contrast, the task used in the experiments reported here
requires the participant to detect the location of a small patch of
p-scramble in a large annular background of q-scramble; more-
over, in a given, separately blocked condition, the histograms p
and q are kept approximately constant to enable the participant
to use top-down attention to optimize performance. For tasks of
this sort, we submit that performance is likely to differ when the
roles of the target and background scramble are reversed.

In particular, suppose (as the models considered in this paper
assume) that the following conditions hold:

1. Any given field-capture channel can produce only nonnegative
levels of activation.

2. The participant is able to use top-down attention to selectively
recruit specific field-capture channels for performing searches
of this sort.

3. Search is efficient only if the participant can combine input
from his/her field-capture channels to produce a spatial ‘‘search
map’’ in which neuronal activation is higher in the region of the
target than it is in the background.2

Under assumptions 1, 2 and 3, if a given field-capture channel
with sensitivity function F is useful for detecting a scramble target
with histogram p in a background with histogram q, then it must
be true that F � p > F � q from which it follows that this field-cap-
ture channel will not be useful for detecting a target with histogram
q in a background with histogram p. This observation implies that
there should be no overlap between the field-capture channels
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used by a participant in searching for a target with histogram p in a
background with histogram q vs in searching for a target with his-
togram q in a background with histogram p. This makes it likely
that the grayscale-sensitivities of the search maps produced in
these two tasks will differ strongly.
2. Methods

2.1. Participants

There were three participants (one of whom was the first
author). Each had normal or corrected-to-normal vision. The UC
Irvine Institutional Review Board approved the experimental pro-
cedures, and all participants gave signed consent.
2.2. Equipment

An iMac desktop computer running OS X version 10.6.8 with a
3.06 GHz Intel Core 2 Duo processor and 4 GB memory capacity
was used for stimuli presentation and data collection. The com-
puter was equipped with an ATI Radeon HD 4670 graphics chip.
The monitor had a resolution of 1920 � 1080 and a viewable diag-
onal measure of 21.5 inches.
2.3. Calibration

Linearization of the 9 grayscales used in the stimuli was
achieved using a psychophysical adjustment procedure (used pre-
viously by Chubb, Econopouly & Landy (1994), Chubb, Landy &
Econopouly (2004) and Chubb et al. (2007)) in which a regular grid
of texture elements containing three intensities lumlo; lumhi and
lummid (half with luminance lummid;

1
4 with lumlo and 1

4 with lumhi)
alternated in a coarse vertical square-wave with texture compris-
ing a checkerboard of texture elements alternating between inten-
sities lumlo and lumhi. The screen was then viewed from sufficiently
far away that the fine granularity of the texture was barely visible.
At this distance, the square-wave modulating between the two
types of texture had a spatial frequency of approximately 4 cycles
per deg. Since the texture itself could not be resolved, the square-
wave is visible only if the mean luminance of alternating texture
bars is different. Thus, the luminance lummid (obtained by adjust-
ment) that makes the square-wave vanish is equal to the average
of the intensities lumlo and lumhi. We use the lights v0 and v8 pro-
duced by the minimal and maximal pixel values p0 and p8 of our
monitor as the black and white grayscales in our set. We then
use our adjustment procedure to derive in succession the pixel val-
ues (1) p4 with luminance v4 midway between v0 and v8, (2) p2

with luminance v2 midway between v0 and v4, and (3) p1 with
luminance midway between v0 and v2. We then fit a power func-
tion fa;bðpkÞ ¼ apb

k that minimizes the sum of ðfa;bðpkÞ � vkÞ2 over
k = 0, 1, 2, 4, 8. (The fit is nearly exact.) We take as our nine gray-
scales the lights with pixel values f�1

a;b ðvkÞ; k ¼ 0;1;2; . . . ;8. This
procedure insures that grayscales are linearized in the same sorts
of contexts as those in which they will occur in the stimuli, mini-
mizing distortions due to any spatial nonlinearities in the display.
Fig. 3. Stimulus dimensions and display duration. On a given trial the participant
fixated a small, central cue spot slightly brighter than the background and initiated
a trial with a button-press. Following a 200 ms delay the stimulus was then
presented for 167 ms. After the display, the participant used the number pad keys
to indicate the location (up, up-right, right, down-right, down, down-left, left, or up-
left) of the target disk. A beep sounded after any incorrect response.
2.4. The structure of a trial

The scrambles used in all stimuli were composed from the set X
comprising the nine grayscales with luminances ka, for
k ¼ 0;1; . . . ;8 and a ¼ 13:04 cd=m2. The homogeneous gray back-
ground had luminance 52 cd=m2 (equal to the fifth grayscale in
X). We assume that the results reported here depend not on the
actual luminances of grayscales but rather on their Weber
contrasts relative to the gray field to which the participant is
adapted: �1:0;�0:75; . . . ;1:0.

Before and after each stimulus presentation, the participant
viewed a homogeneous, mean-gray field. No chin rest was used.
The participant fixated a small cue spot slightly brighter than the
background and initiated a trial with a button-press. Following a
200 ms delay the stimulus was then presented for 167 ms. For
some perturbation q, the stimulus comprised a target disk of
scramble with histogram U þ q presented in one of eight locations
in an annular background of scramble with histogram U � q. At the
viewing distance of 85 cm, as indicated by Fig. 3, the target disk
subtended 2.82� of visual angle and was centered in within the
annulus 4.66� from fixation. The individual squares composing
the scramble subtended 0.1� (i.e., 60) of visual angle.

After the display, the participant used the number pad keys to
indicate the location of the target disk. The mapping was: ‘‘7’’ for
up-left, ‘‘8’’ for up, ‘‘9’’ for up-right, ‘‘6’’ for right, ‘‘3’’ for down-
right, ‘‘2’’ for down, ‘‘1’’ for down-left, ‘‘4’’ for left. A beep sounded
after any incorrect response.

2.5. Experimental conditions

Each participant performed 4500 trials in each of six, separately
blocked conditions. Each of these conditions constitutes an individ-
ual application of the ‘‘seed expansion’’ method Chubb, Scofield,
Chiao, and Sperling (2012). The next section gives a brief overview
of the method as it applies in a single one of these six conditions in
the current experiment.

2.5.1. The seed expansion method as used the current experiment
In a given separately blocked condition of the current experi-

ment, a single dominant perturbation / is used to define the differ-
ence between the target vs the background on each trial. The
perturbation / is called the seed of the condition. On any given trial
in the condition with seed /, the target will have a histogram U þ q
for some perturbation q correlated strongly and positively with /
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(all correlations are 0.894 or higher), and the annular background
will have histogram U � q. Thus, the qualitative difference
between the target-disk vs the background will be similar from
trial to trial. This feature of the design is intended to prompt the
participant to use top-down attention to optimize his/her search
strategy to exploit the constancy of this target-vs-background tex-
ture difference. In particular, we will assume that the participant
combines information from his/her field-capture channels to pro-
duce a ‘‘grayscale filter’’ F/ that gives high values to grayscales pre-
valent in the target and low values to grayscales prevalent in the
background. It is by applying F/ to the stimulus on a given trial that
the participant is assumed to produce the search map in which the
target location is signaled by heightened activation. By requiring
that all perturbations q tested in the condition with the seed / cor-
relate strongly and positively with /, we insure that the filter acti-
vation produced by the target on each trial will be greater than the
filter activation produced by the background.

To characterize F/, we use a general linear model in which the
regression variables are the values qðxÞ, for all x 2 X, and the link-
ing function is a Weibull function. Specifically, we assume:

W/ðSal/ðqÞÞ ¼ Pchance þ ð1� Pchance

� PfingerÞ 1� exp �Sal/ðqÞb/

� �� �
: ð8Þ

where

1. Sal/ðqÞ ¼ F/ � q ð9Þ
3 The
ization
is the ‘‘salience’’ of the target on a trial with perturbation q in
4 The �k ’s need to strike a compromise. On the one hand, the higher the value of �k ,
the more power one has in estimating the contribution of kk to f/ . On the other hand,
if the perturbations away from / are too large, then the assumption that Sal/ is a
linear function of the coordinate values of q (i.e., Eq. (9)) may fail. In particular, the
the condition with seed /,
2. Pchance ¼ 0:125 (because the participant makes a forced

choice from amongst 8 options), and
3. Pfinger ¼ 0:02 (to accommodate ‘‘finger errors,’’ i.e., errors that

participants might make even on trials in which they clearly
discern the correct response).

In its usual formulation, the Weibull function has two param-
eters, a ‘‘steepness’’ parameter (b/ in Eq. (8) and a ‘‘centering
parameter’’ that usually appears as a denominator to the inde-
pendent variable (Sal/ðqÞ in Eq. (8)). The reader will note that
the centering parameter is missing from Eq. (8). This is because
the centering parameter can be absorbed into the function F/ in
the expression F/ � q which is the argument to W/ in the context
of this model.

Concerning Eq. (9): F/ (in Eq. (9)) can be written as the sum of a
function f/ that sums to 0 plus an additive constant:

F/ðxÞ ¼ f/ðxÞ þ C/: ð10Þ

Because any perturbation Sal/ðqÞ sums to 0, it follows that

Sal/ðqÞ ¼ F/ � q ¼ f/ � q; ð11Þ

which shows that C/ cannot be estimated. The function f/ (the com-
ponent of F/ that can be estimated) is called the expansion of the
seed perturbation /.

2.5.2. The six seed conditions used in the current experiment
To describe the perturbations used in these experiments, we

identify the 9 grayscales ranging from black to white in X with
the corresponding Weber contrasts v ¼ �1;�0:75; . . . ;1. The
Legendre polynomials of order 1, 2, . . . , 8 are listed in Table 1.3

Our original reason (Chubb, Econopouly & Landy, 1994) for using
the Legendre polynomials for this work was because they provided
Legendre polynomials are derived by applying Gram–Schmidt orthonormal-
to the sequence of monomials hjðvÞ ¼ v j; j ¼ 0;1; . . . ;8.
an easy way to isolate a space of scrambles all with the same mean
and variance. In particular, for scrambles with histograms p and q,

1. if p � k1 ¼ q � k1, then the two scrambles have the same mean
grayscale, and

2. if in addition, p � k2 ¼ q � k2, then they also have the same gray-
scale variance.

Thus, for any perturbation q derived by taking a linear combina-
tion of k3; k4; . . . ; k8; ðU þ qÞ-scramble has the same mean and var-
iance as U-scramble.

The experiment comprised 6 different conditions corresponding
to the seed perturbations / ¼ k1;�k1; k2;�k2; k3, and �k3, examples
of which are shown in Fig. 4. To make the difference in quality
between target vs background as vivid as possible, these stimuli
have the maximum possible histogram difference.

2.5.3. Trial-by-trial perturbations within a given seed condition
To allow the participant to use top-down attention to optimize

his/her grayscale filter for seed perturbation /, the perturbation
used on each trial must correlate strongly and positively with /.
In addition, to enable efficient estimation of the expansion f/, the
perturbations q tested across different trials should.

1. Have saliences yielding good but not perfect performance.
2. Span the space of all perturbations.
3. Probe dimensions in the space of perturbations orthogonal to /

in an evenhanded fashion.

We used the following method to satisfy these criteria in each of
the six separately blocked seed conditions. The participant per-
formed 4500 trials, 300 in each of 15 interleaved staircases, which
we now define. Let b1 ¼ /, and let

b2 ¼
k2 if / ¼ �k1

k1 otherwise;

�
ð12Þ

and

b3 ¼
k2 if / ¼ �k3

k3 otherwise;

�
ð13Þ

and for k ¼ 4;5; . . . ;8, let bk ¼ kk. Then for4

�k ¼
1=3 if bk ¼ k1;

1=2 otherwise;

�
ð14Þ

we construct the perturbations

gþk ¼
b1 þ �kbk

kb1 þ �kbkk
and g�k ¼

b1 � �bk

kb1 � �bkk
ð15Þ

for k ¼ 2;3; . . . ;8. Note that each of the perturbations q ¼ b1, as well
as q ¼ gþk and q ¼ g�k for k ¼ 2;3; . . . ;8, is normalized. Note also
that if �k ¼ 1

2 (�k ¼ 1
3), then the correlation between / and gk is

/ � gk ¼ 0:8944 (/ � gk ¼ 0:9487).
For each of the 15 perturbations q ¼ b1;gþk ;g

�
k ; k ¼ 2;3; . . . ;8,

psychometric data testing performance at localizing a target patch
of ðU þ AqÞ-scramble in an annular background of ðU � AqÞ-
scramble was collected for various amplitudes A. Specifically, the
high sensitivity of human vision to variations in k1 (which controls the difference
between the mean Weber contrast of the target patch vs the background) leads us to
restrict the contributions of k1 to the perturbations in the conditions with seeds �k2

and �k3 more tightly than the contributions of other non-seed kk ’s.



Table 1
The Legendre polynomials of order 1–8.

k kkð�1Þ kkð�:75Þ kkð�:5Þ kkð�:25Þ kkð0Þ kkð:25Þ kkð:5Þ kkð:75Þ kkð1Þ

1 �0.5164 �0.3873 �0.2582 �0.1291 0.0000 0.1291 0.2582 0.3873 0.5164
2 0.5318 0.1330 �0.1519 �0.3229 �0.3799 �0.3229 �0.1519 0.1330 0.5318
3 �0.4449 0.2225 0.4132 0.2860 �0.0000 �0.2860 �0.4132 �0.2225 0.4449
4 0.3129 �0.4693 �0.2458 0.2011 0.4023 0.2011 �0.2458 �0.4693 0.3129
5 �0.1849 0.5085 �0.1849 �0.4160 0.0000 0.4160 0.1849 �0.5085 0.1849
6 0.0899 �0.3820 0.4944 0.0225 �0.4495 0.0225 0.4944 �0.3820 0.0899
7 �0.0341 0.2048 �0.4780 0.4780 �0.0000 �0.4780 0.4780 �0.2048 0.0341
8 0.0088 �0.0707 0.2473 �0.4942 0.6171 �0.4931 0.2462 �0.0703 0.0088

Fig. 4. Stimulus conditions. The target disks in the left-hand stimuli are composed of grayscale scramble with histogram U þ Akkk , for k ¼ 1 (top), k ¼ 2 (middle) and k ¼ 3
(bottom), and the background annulus has histogram U � Akkk , where the histogram amplitude Ak is chosen to make the perturbation Akkk maximal. The roles of target and
background scramble are reversed in the stimuli on the right.
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staircase for a given perturbation q could visit the 30 histogram
amplitudes A ¼ Amax

30 ; 2Amax
30 ; . . . ;Amax, for Amax the scalar for which

the maximum absolute value of Amaxq is equal to 1
9. Each staircase

started at amplitude A ¼ Amax
2 and ran for 300 trials. In each stair-

case, A was decremented whenever the previous two trials both
yielded correct responses; otherwise A was incremented. (Stair-
cases that use this ‘‘2-down-1-up’’ update rule concentrate obser-
vations around perturbation amplitudes that yield performance in
the neighborhood of 71% correct.) These 15 staircases (one for each
of q ¼ b1;gþk and g�k ; k ¼ 2;3; . . . ;8) were randomly interleaved to
collect the 4500 trials of data in the condition with seed /.

3. Results

3.1. Evidence of search asymmetries

In standard search tasks, one sometimes finds that search for a
target of type A in a field of distractors of type B is more efficient
than search for a target of type B in a field of distractors of type
A. Such a result is called a ‘‘search asymmetry.’’ For example, a
search asymmetry holds between c’s and o’s (e.g., Treisman &
Gormican, 1988): search for a c in a field of o’s is more efficient
than search for an o in a field of c’s.

Search asymmetries place important constraints on theories of
the field-capture channels resident in human vision. It is typically
assumed that search for a target of type A amongst a field of dis-
tractors of type B is efficient only if there exists in human vision
one or more field-capture channels that are activated by objects
of type A but not by objects of type B. Thus, for example, the finding
that search is easy for a c amongst o’s implies that human vision
has a field-capture channel that is activated by c’s but not by o’s;
conversely, the finding that search is hard for an o amongst c’s
implies that all field-capture channels activated by o’s are also acti-
vated by c’s.

In the current context, a search asymmetry is said to hold for a
given seed perturbation / and a given participant j if fj;/ – � fj;�/

(i.e., if the expansions fj;/ and fj;�/ derived for participant j from
complementary task conditions fail to be negatives of each other).

The expansions estimated from our six different seed conditions
are plotted in Fig. 5 so as to reveal whatever search asymmetries
exist. Each row of three panels presents the results for one partic-
ipant for / ¼ k1; k2 and k3 (from left to right). The dim dashed line
in each panel shows /. The white curve shows the expansion fj;/

derived for participant j ¼ 1;2;3 from the condition with seed /;
the black curve shows �fj;�/, the negative of the expansion derived
for participant j from the condition with seed �/. A search asym-
metry exists if the white and black curves differ in form. Error bars
are 95% Bayesian credible intervals. Note that the search asymme-
tries are especially striking for / ¼ k3. Likelihood ratio tests of the
null hypothesis that fj;/ ¼ �fj;�/ yield vanishingly small p-values for
the results in all 9 panels of Fig. 5 except in the case of / ¼ k2 for
S1, for which v2

df¼8 ¼ 18:88; p ¼ 0:016.

3.2. Preliminary model

A preliminary model was applied to the data from all six seed
conditions separately for each of the three participants. This model
assumed that:

1. The participant has some number NFCCs of field-capture chan-
nels with modulators fk for k ¼ 1;2; . . . ;NFCCs.

2. For any given seed /, the expansion f/ is the (unique) weighted
sum
f/ ¼
XNFCCs

k¼1

w/;kfk ð16Þ
for which the weights w/;1;w/;2; . . . ;w/;NFCCs are chosen to maximize
f/ � / under the constraints that they are all nonnegative and sum
to 1.
3. On a trial with perturbation q in the condition with seed /,

(a) the salience of target is
Sal/ðqÞ ¼ f/ � q; ð17Þ

(b) and, for Pchance ¼ 0:125 and Pfinger ¼ 0:02, the probability of a
correct response is

WðSal/ðqÞÞ ¼ Pchance þ ð1� Pchance

� PfingerÞ 1� exp �Sal/ðqÞb
h i� �

ð18Þ

(Note the implicit assumption that the Weibull steepness parame-
ter b is fixed across different seed conditions.)

3.2.1. Results from the preliminary model

1. For all three participants, NFCCs had to be at least 4 to obtain rea-
sonable fits.

2. The predicted sensitivity function modulators f1; f2; f3 and f4

were qualitatively similar for all three participants. These
included
(a) a modulator qualitatively similar to the blackshot sensitiv-

ity function,
(b) a modulator whose sensitivity is minimal for black, rises

sharply to its maximum for grayscales slightly darker than
mid-gray, then falls to uniform half-height for all higher
grayscales,

(c) a modulator whose sensitivity is minimal for black,
increases linearly with increasing grayscale and reaches
its maximum near white,

(d) a modulator (complementary to channel 2c) whose sensi-
tivity is maximal for black decreases linearly and reaches
its minimum near white.

Especially striking was the result that these modulators (c) and (d)
were close to negatives of each other for all three participants.

3.3. The 3-dimensional, 4-channel (3D4C) model

The preliminary analyses described in Section 3.2 suggested
that it might be possible to derive an adequate description
of the results using a model that fit the data from all three
participants across all six conditions under the following
assumptions:

1. Human vision has four field-capture channels sensitive to
gray-scale scrambles whose normalized modulators f1; f2; f3,
and f4 satisfy the constraint that f4 ¼ �f3.

2. All participants share these same four field-capture channels;
however, participants may vary in their relative sensitivity to
information from these different channels. Thus, for partici-
pants j ¼ 1;2;3, the modulators of field-capture channels
k ¼ 1;2;3;4 are fj;k ¼ Aj;kfk for nonnegative amplitudes Aj;k

reflecting the sensitivities of different participants j to informa-
tion from different field-capture channels k.

3. For a given seed perturbation /, the expansion fj;/ achieved by
participant j ¼ 1;2;3 is the weighted sum
fj;/ ¼
X4

k¼1

wj;kfj;k ð19Þ



Fig. 5. Search Asymmetries. Each row of three panels presents the results for one participant for / ¼ k1; k2 and k3 (from left to right). The dim dashed line in each panel shows /
. The white curve shows the expansion fj;/ derived for participant Sj (j ¼ 1;2;3) from the condition with seed /; the black curve shows �fj;�/ , the negative of the expansion
derived from the condition with seed �/. A search asymmetry exists if the white and black curves differ in form. Error bars are 95% Bayesian credible intervals. Note that the
search asymmetries are especially striking for / ¼ k3.
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in which the weights are chosen optimally for the task at hand: that
is, the weights are chosen to maximize fj;/ � / under the constraint
that wj;1;wj;2;wj;3, and wj;4 are nonnegative and sum to 1. Thus,
4. For participant j ¼ 1;2;3, on a trial in which the target is

defined by perturbation q in the condition with seed /,
(a) the salience of target is
Salj;/ðqÞ ¼ fj;/ � q; ð20Þ

(b) and for Pchance ¼ 0:125 and Pfinger ¼ 0:02, the probability of a
correct response is

WjðSalj;/ðqÞÞ ¼ Pchance þ ð1� Pchance

� PfingerÞ 1� exp �Salj;/ðqÞbj

h i� �
: ð21Þ

(Note the assumption that the Weibull exponent bj may differ for
different participants j ¼ 1;2;3; however, for participant j;bj is fixed
across different seed conditions.)

Each of the normalized field-capture channel modulators fk is
constrained to sum to 0 and to satisfy kfkk ¼ 1; thus, these func-
tions collectively contribute 3� ð9� 2Þ ¼ 21 degrees of freedom.
f4 is determined by f3, so it adds no degrees of freedom. Each of
the parameters bj and Aj;k; j ¼ 1;2;3; k ¼ 1;2;3;4 adds a degree of
freedom, yielding 15 additional degrees of freedom. The wj;k’s
occurring in Eq. (19) are completely determined by the constraints
they are required to satisfy; hence, they contribute no degrees of
freedom. Thus the total number of degrees of freedom in the
3D4C model is 36.

3.4. Results of fitting the 3D4C model

The left panel in Fig. 6 shows the four estimated field-capture
channel sensitivity functions F1;kðxÞ; k ¼ 1;2;3;4; for participant
S1, and the center and right panels show the corresponding results
for participants S2 and S3. Only the field-capture channel modula-
tors fj;k ¼ Aj;kfkðxÞ have actually been estimated from the model fit;
we have taken the liberty of setting the field-capture channel base-
line constant Cj;k ¼ �minffj;kg in each case to make minfFj;kg ¼ 0.
The sensitivity functions Fj;1 show the sharp tuning to black char-
acteristic of the blackshot sensitivity function. Sensitivity functions
Fj;2 characterize a previously unknown field-capture channel selec-
tive for midrange grays slightly darker than the mean. The sensitiv-
ity function Fj;3 (Fj;4) shows linearly increasing (decreasing)
sensitivity to grayscale across the gamut, reaching its maximum
(minimum) near the high end.

Fig. 7 plots the expansions predicted by the 3D4C model for all
three participants juxtaposed with the expansions estimated indi-
vidually from the data for the different seed conditions. The num-
ber of degrees of freedom used to produce the black (white) curves
in Fig. 7 is 9� 3� 6 ¼ 162 (36). However, the white curves account
for more than 98% of the variance in the trial-by-trial saliences
(across all 81,000 trials) predicted using the expansions (the black
curves) estimated separately for all participants in all seed
conditions.

3.5. Model comparisons

The 3D4C model is tightly sandwiched in a nested sequence
between two models. The more general model is the ‘‘4-channel’’
(4C) model in which the normalized modulator of the fourth chan-
nel is not required to satisfy f4 ¼ �f3. The more restricted model is
the ‘‘2-unsigned channel, 1-signed channel’’ (2U1S) model which
imposes the additional constraint that

Aj;4 ¼ Aj;3 for participants j ¼ 1;2;3: ð22Þ

Note that if Eq. (22) is satisfied, then fj;4 ¼ Aj;4f4 ¼ �Aj;3f3 ¼ �fj;3,
implying that the term wj;4fj;4 occurring in Eq. (19) can be written
as �wj;4fj;3 which in turn implies that Eq. (19) can be written



Fig. 6. Estimated field-capture channel sensitivity functions. Fitting the 3D4C model jointly to the data for all three participants j = 1,2,3 yields the 12 estimated field-capture
channel sensitivity functions Fj;kðxÞ ¼ Cj;k þ fj;kðxÞ. In each case, the sensitivity modulator fj;k has been estimated from the model fit, and the baseline constant Cj;k has been
set to �minffj;kg to make the minimum value of Fj;k equal to 0. Results are shown for participants S1, S2 and S3 in the three panels from left to right. Note that sensitivity
functions Fj;1 (j = 1,2,3) closely resemble the blackshot sensitivity function. Sensitivity functions Fj;2 characterize a previously unknown field-capture channel selective for
midrange grays slightly darker than the mean. Sensitivity functions Fj;3 and Fj;4 are linearly dependent; specifically, for a given participant j, modulator fj;4 ¼ �akfj;3 for ak > 0.
The sensitivity function Fj;3 (Fj;4) shows linearly increasing (decreasing) sensitivity to grayscale across the gamut, reaching its maximum (minimum) near the high end. Error
bars are 95% Bayesian credible intervals.

Fig. 7. Expansions predicted by the 3D4C model. Expansions estimated from the 3D4C model (plotted in white) and expansions estimated from the data from individual seed
conditions (plotted in black) for each of the three participants. Error bars are 95% Bayesian credible intervals. Note that the 3D4C model expansions (white curves-based on 39
degrees of freedom) account for more than 98% of the variance in the trial-by-trial saliences (across all 81,000 trials) estimated using the expansions (the black curves)
derived separately for all participants in all seed conditions.
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fj;/ ¼
X3

k¼1

wj;kfj;k ð23Þ

where the sign of wj;3 is the same as that of f3 � /. Thus, the
additional constraint imposed by Eq. (22) leads to a model with only
three field-capture channels, the third of which produces signed
responses; this allows the coefficient wj;3 to vary in sign in Eq. (23).

Likelihood ratio tests were used to compare the 3D4C model
with each of the 2U1S and 4C models. The likelihood ratio test
(e.g., Hoel, Port & Stone, 1971) compares the maximum likelihoodbKrestricted of the more restricted model to the maximum likelihoodbKfuller of the more general model. As shown by Wilks (1938), if
the restricted model captures the true state of the world, then
the statistic �2 lnðbKrestricted=bKfullerÞ is asymptotically distributed as
v2
ðmÞ where the number of degrees of freedom m is equal to the num-

ber of free parameters in the unconstrained model minus the num-
ber of free parameters in the constrained model. The test in which
the restricted model was the 2U1S model and the fuller model was
the 3D4C model yielded v2

ð3Þ ¼ 341:27 (p infinitesimal), emphati-
cally rejecting the null hypothesis that the 2U1S model captures
the true state of the world. On the other hand, the test in which
the restricted model was the 3D4C model and the fuller model
was the 4C model yielded v2

ð7Þ ¼ 2:97 (p ¼ 0:887) lending striking
support to claim that field-capture channels 3 and 4 do indeed
have complementary modulators.
4. Discussion

4.1. Implications of search asymmetries

A single important conclusion follows immediately from the
search asymmetries documented in Fig. 5. Previous investigations
of grayscale scramble discrimination (Chubb, Econopouly &
Landy, 1994; Chubb, Landy & Econopouly, 2004; Chubb et al.,
2007) have assumed (by analogy to color perception) that

1. The visual impact of a scramble can be summarized by the vec-
tor of activations the scramble produces in scramble-selective
field-capture channels.

2. The salience of the difference between two scrambles is a Min-
kowski distance between the vectors of activations they
produce.

3. The probability of a correct response in a task requiring discrim-
ination of two scrambles is a psychometric function of the sal-
ience of the difference between them.

However, by definition, any distance Dðv ;wÞ between vectors v
and w satisfies Dðv ;wÞ ¼ Dðv ;wÞ; that is, the distance of v from w is
equal to the distance of w from v. In the current context, assump-
tion 2. above implies that the salience of a target disk of ðU þ /Þ-
scramble in a background of ðU � /Þ-scramble should be equal to



5 Exceptions include Whittle (1986), Chubb, Econopouly and Landy (1994) and
Chubb, Landy and Econopouly (2004) which implicate a visual process that is most
naturally viewed as tuned to Weber contrasts very near �1, with a response that
drops rapidly to 0 with increasing Weber contrasts (i.e., for Weber contrasts greater
than around �0:9).
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the salience of a target patch of ðU � /Þ-scramble in a background
of ðU þ /Þ-scramble which in turn implies that the task of detect-
ing a patch of ðU þ /Þ-scramble in a background of ðU � /Þ-scram-
ble should yield performance identical to the task of detecting a
patch of ðU � /Þ-scramble in a background of ðU þ /Þ-scramble.
The search asymmetries observed in the current experiment con-
tradict this prediction.

The 3D4C model assumes that in the condition with seed /, the
participant uses top-down attentional control to linearly combine
the responses of his/her field-capture channels to synthesize a
‘‘grayscale filter’’ that is optimal for detecting a patch of ðU þ /Þ-
scramble in a background of ðU � /Þ-scramble. Importantly, the
optimal filter for the complementary task is likely to be different.
The 3D4C model proposes that the search asymmetries evident
in Fig. 5 reflect differences of this sort in the grayscale filters
deployed in complementary seed conditions.

4.2. The 3D4C model assumptions: How plausible are they?

We acknowledge that the 3D4C model makes several very
strong assumptions that are unlikely to be strictly true; these
include the following:

1. The field-capture channels of different participants have sensi-
tivity functions whose modulators are identical except for dif-
ferent scale factors.

2. Participants can take arbitrary linear combinations of field-cap-
ture channel responses to construct the grayscale filters they
use in different seed conditions.

3. In producing the grayscale filters they use in particular seed
conditions, participants always combine the responses of their
field-capture channels with weights that are optimal for the
current seed condition.

Despite these implausibly strong assumptions, however, the
3D4C model provides a remarkably clean summary of the substan-
tial body of data provided by three participants across six different
seed conditions in this study. Indeed, the success of the model pro-
vides support for the claim that the strong assumptions upon
which it is founded may in fact hold reasonably well.

It should also be noted that the 3D4C model is consistent with
previous findings. First, the finding that the modulators of the
field-capture channel sensitivity functions span a 3-dimensional
space is consistent with previous results Chubb et al. (2007). Sec-
ond, the 3D4C model imposes no constraints upon the normalized
modulators f1; f2, and f3 used to generate the four field-capture
channel sensitivity functions of all three participants; nonetheless,
the normalized modulator f1 (used to generate Fj;1 in Fig. 6 for each
participant j ¼ 1;2;3) closely resembles the sensitivity function of
the blackshot field-capture channel implicated by previous exper-
iments Chubb, Econopouly and Landy (1994) and Chubb, Landy
and Econopouly (2004).

The 3D4C model thus emerges as a theory of how human
observers process grayscale scrambles. Of central interest is the
finding that human vision includes four field-capture channels
whose sensitivity functions conform to those shown in each of
the panels in Fig. 6 (up to the unmeasured baseline constants that
have been set to �minffj;kg in Fig. 6).

Let us call these 4 channels.

1. the blackshot channel (characterized by sensitivity function Fj;1

for participant j ¼ 1;2;3 in Fig. 6),
2. the gray-tuned channel (characterized by sensitivity function

Fj;2),
3. the up-ramped channel (characterized by sensitivity function

Fj;3),
4. the down-ramped channel (characterized by sensitivity function
Fj;4),

bearing in mind that the normalized modulators f3 and f4 of the up-
ramped and down-ramped channels are required by the 3D4C
model to satisfy f4 ¼ �f3.

4.3. The relation between the 3D4C model and the ON- and OFF-
systems

A substantial body of research suggests that human vision is
asymmetric in its processing of negative vs positive contrast polar-
ities, with negative contrast polarities processed faster and more
efficiently than positive polarities (Blackwell, 1946; Bowen,
Pokorny & Smith, 1989; Chan & Tyler, 1992; Chubb, Econopouly
& Landy, 1994; Chubb, Landy & Econopouly, 2004; Chubb & Nam,
2000; Dannemiller & Stephens, 2001; Jin, Wang, Lashgari,
Swadlow, & Alonso, 2011; Komban, Alonso & Zaidi, 2011;
Konstevich & Tyler, 1999; Krauskopf, 1980; Lu & Sperling, 2012;
Short, 1966; Whittle, 1986; Xing, Yeh & Shapley, 2010; Yeh, Xing
& Shapley, 2009). The results of most of the previous studies can
be understood in terms of two processes, an ON-system process
whose response is zero for negative Weber contrasts and increases
in a smoothly graded fashion as a function of positive Weber con-
trast, and a corresponding OFF-system process whose response is
zero for positive Weber contrasts and increases in a smoothly
graded fashion as a function of increasingly negative Weber con-
trasts. Asymmetries in the processing of negative vs positive
Weber contrasts have usually been ascribed to differences in the
computations performed by the ON- vs OFF-systems.5

One might construe the down-ramped sensitivity function as
the response function of the OFF-system. However, the down-
ramped function decreases continuously across Weber contrasts
from �1 up to 0:75. This range seems too broad to reflect the
OFF-system in isolation. Even more striking, not one of the field-
capture channels posited by the 3D4C model has a sensitivity func-
tion that bears any resemblance at all to the response function of
the ON-system. This raises the question: what is the relation
between the four field-capture channels posited by the 3D4C
model and the ON- and OFF-systems?

4.3.1. Hypothesis: the up- and down-ramped channels are differences
of ON- and OFF-responses

We hypothesize that each of the up-ramped and down-ramped
field-capture channels is derived by combining the responses of
the ON- and OFF-systems in push–pull fashion; specifically:

1. The functions that characterize the responses of the OFF- and
ON-systems to grayscale scrambles are fOFF and fON plotted in
Fig. 8.

2. The up-ramped field-capture channel is derived by taking
fup-rampedðxÞ ¼ Aup fONðxÞ � fOFFðxÞ þ Cup
� �

for all x 2 X

ð24Þ
for positive scalars Aup and Cup > maxffOFFg.
3. The down-ramped field-capture channel is derived by taking
fdown-rampedðxÞ¼Adown fOFFðxÞ� fONðxÞþCdownð Þ for all x2X

ð25Þ
for positive scalars Adown and Cdown > maxffONg.



Fig. 8. Hypothetical OFF- and ON-system response functions. Suppose the functions characterizing the responses of the OFF- and ON-systems to grayscale scrambles are given
by fOFF and fON . In this case, the up-ramped (down-ramped) field-capture channel can be derived by combining fOff and fON as in Eq. (24) (Eq. (25)).
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The reader will note that fON and fOFF do not hit the Weber con-
trast axis at 0 as might be expected. This is hardly surprising, how-
ever, given that

1. each of the texture elements in a grayscale scramble occurs in a
dense, highly variable context that is likely to include both dark
and bright abutting elements, and

2. the dark elements plausibly exert greater influence in deter-
mining the effective zero for each of the ON- and OFF-system
responses (Blackwell, 1946; Bowen, Pokorny & Smith, 1989;
Chan & Tyler, 1992; Chubb, Econopouly & Landy, 1994;
Chubb, Landy & Econopouly, 2004; Chubb & Nam, 2000;
Dannemiller & Stephens, 2001; Jin et al., 2011; Komban,
Alonso & Zaidi, 2011; Konstevich & Tyler, 1999; Krauskopf,
1980; Lu & Sperling, 2012; Short, 1966; Whittle, 1986; Xing,
Yeh & Shapley, 2010; Yeh, Xing & Shapley, 2009).

The reader will also note that fON is nonmonotonic with increas-
ing Weber contrast. Although this might seem surprising, it should
be noted that a similar nonmonotonicity has previously been
observed an experiment in which participants strove to judge
which of two grayscale scrambles had higher mean grayscale
(Nam & Chubb, 2000). Indeed the sensitivity functions derived in
that study were similar in form to fup-ramped plotted in Fig. 6.
4.4. The blackshot and gray-tuned field-capture channels

A field-capture channel sharply tuned to very black elements in
the visual input has been implicated in several previous studies
(Chubb, Econopouly & Landy, 1994; Chubb, Landy & Econopouly,
2004; Whittle, 1986); thus, the fact that this ‘‘blackshot’’ channel
falls out of the analysis as one of the four field-capture channels in
the 3D4C model solidifies confidence in the model. It is natural to
assume that the blackshot field-capture channel is distilled from
the OFF-system response, and there is evidence to suggest that the
extraction of the blackshot signal may require integration of infor-
mation over time. In his classic study of luminance increment and
decrement thresholds (Whittle, 1986), Whittle discovered that
observers were exquisitely sensitive to small differences between
luminances very close to black, even though the targets to be dis-
criminated were presented against a background of photopic lumi-
nance. Whittle also noted that the system mediating performance
in this task was fairly slow, requiring around 250 ms to reach peak
sensitivity. Consonant with this observation, the experiments that
first measured the blackshot sensitivity function used displays of
250 ms Chubb, Econopouly and Landy (1994) and 200 ms Chubb,
Landy and Econopouly (2004). With that said, however, very little
is known about the blackshot field-capture channel. In particular,
nothing is known either about the process by which the blackshot
signal is extracted or about the neural substrate of the blackshot
channel.

The gray-tuned field-capture channel has not been previously
documented, and we have no good account to offer of its relation
to the ON- and OFF-systems. Several observations seem potentially
useful, however:

1. The steepness of the gray-tuned channel sensitivity function
near Weber contrast �1:0 suggests that the gray-tuned channel
may depend on some of the same processes as the blackshot
channel. Indeed, the gray-tuned channel sensitivity function
bears some resemblance to the negative of the blackshot sensi-
tivity function.

2. The peak sensitivity of the gray-tuned channel is to Weber con-
trasts near �0:25. This is also the Weber contrast hypothesized
to produce activation 0 in each of the ON- and OFF-systems in
the context of a grayscale scramble. Under this hypothesis,
then, the gray-tuned channel is maximally activated by Weber
contrasts that produce minimal activation in the ON- and OFF-
systems.

5. Summary

Each of three participants performed 4500 trials in each of six
different conditions of a task requiring him/her to detect the loca-
tion of a patch of grayscale scramble in a background of different
scramble. In a given condition, the quality that differentiated the
target from the background was kept approximately constant from
trial to trial to enable the participant to optimize a grayscale filter
for the condition. Preliminary analysis of the data from individual
participants suggested that a model might be fit (to the 81,000 tri-
als of data from all three participants across all six conditions) that
was based on the following assumptions:

1. Human vision has four field-capture channels that are differen-
tially sensitive to grayscale scrambles.

2. Two of these field-capture channels have sensitivity functions
whose normalized deviations from their means are negatives
of each other.

3. Different participants share these same four field-capture chan-
nels but may differ in their sensitivity to information from the
four channels.

4. In performing tasks of the sort required in the current experi-
ments, participants can produce grayscale filters by taking lin-
ear combinations of the outputs from their four field-capture
channels. Moreover,
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5. In a given task condition in the current experiment, a given par-
ticipant always uses the particular linear combination of field-
capture channels (with nonnegative weights that sum to 1) that
is optimal for the task variant tested in that condition.

The model itself leaves the forms of three of the field-capture
sensitivity functions unconstrained while constraining the fourth
to mirror the third in the sense of assumption 2 above.

The resulting fit accounted for more than 98% of the variance in
the trial-by-trial salience observed in the results from individual
task conditions. The four field-capture channels predicted by the
model were:

1. the blackshot channel (characterized by sensitivity function Fj;1

for participant j ¼ 1;2;3 in Fig. 6),
2. the gray-tuned channel (characterized by sensitivity function

Fj;2),
3. the up-ramped channel (characterized by sensitivity function

Fj;3),
4. the down-ramped channel (characterized by sensitivity function

Fj;4), with the down-ramped sensitivity function constrained to
mirror the up-ramped sensitivity function.

Because these four field-capture channels collectively confer
sensitivity to a 3-dimensional space of histogram variations, the
model is called the 3D4C model.
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Appendix A

This appendix describes the details of the Bayesian model-fit-
ting methods used in this paper. The paper derives estimates of
parameters from two different models:

1. the basic seed-expansion model captured by Eqs. (9) and (8) in
Section 2.5.1,

2. the 3D4C model described in Section 3.3.

In each case, Markov chain Monte Carlo simulation was used to
estimate the joint posterior density characterizing model parame-
ters. To derive the sample from the posterior joint density, the
algorithm needs to iteratively evaluate the model likelihood
function.

A.1. The likelihood function used to fit the basic seed expansion model

The model used to estimate the expansion f/ achieved by given
participant in the condition with seed perturbation / has parame-
ters b/ 2 Rþ and f/ : X! R that sums to 0.

The likelihood function for this model is defined as follows for
any b 2 Rþ and any f : X! R that sums to 0:

KBasic;/ðf ; bÞ ¼
Y

P/ðt j f ;bÞc/ðtÞð1� P/ðt j f ; bÞÞð1�c/ðtÞÞ ð26Þ

where

1. the product is over all trials t performed by the participant in
the condition with seed perturbation /,

2. c/ðtÞ ¼ 1 if the response on trial t is correct and 0 if incorrect,
3. and the probability P/ðt j f ; bÞ that the participant responds

correctly on the tth trial in the condition with seed / under
the assumption that f/ ¼ f and b/ ¼ b is given by
P/ðt j f ;bÞ ¼ Pchance þ ð1� Pchance � PfingerÞ

� 1� exp �ðf � q/;tÞ
b

h i� �
ð27Þ
for Pchance ¼ 0:125; Pfinger ¼ 0:02, and q/;t the perturbation used to
generate the stimulus on the tth trial for the participant in the
condition with seed /.

A.2. The likelihood function used to fit the 3D4C model

Let

1. qt;j;/ be the perturbation used to define the target scramble pre-
sented to participant j on trial t of the condition with seed /,
and

2. cðt; j;/Þ ¼ 1 if the participant responded correctly on this trial
or cðt; j;/Þ ¼ 0 if incorrectly.

The parameters of the 3D4C model are functions fk : X!
R; k ¼ 1;2;3, each of which sums to 0 and satisfies kfkk ¼ 1,
nonnegative Weibull function exponents bj and nonnegative
sensitivity function amplitudes Aj;k for participants j ¼ 1;2;3 and
field-capture channels k ¼ 1;2;3;4. The likelihood function for
the 3D4C model is defined as follows for any g comprising guesses
at these 42 parameters (with 36 degrees of freedom):

K3D4CðgÞ ¼
Y

Pðt; j;/ j gÞcðt;j;/Þð1� Pðt; j;/ j gÞÞð1�cðt;j;/ÞÞ ð28Þ

where, for Pchance ¼ 0:125 and Pfinger ¼ 0:02, the probability (given g)
that participant j responds correctly on trial t in the condition with
seed / is

Pðt; j;/ jgÞ¼ Pchanceþð1�Pchance�PfingerÞ 1�exp �ðfj;/ �qt;j;/Þ
bj

h i� �
ð29Þ

and the expansion fj;/ achieved by participant j in the condition with
seed / is

fj;/ ¼ wj;/;1fj;1 þwj;/;2fj;2 þwj;/;3fj;3 þwj;/;4fj;4 ð30Þ

where

1. the modulators of participant j’s field-capture channel sensitiv-
ity functions are
fj;k ¼ Aj;kfk; and f j;4 ¼ �Aj;4f3 for k ¼ 1;2;3; ð31Þ
and
2. the vector of weights wj;/ ¼ ðwj;/;1;wj;/;2;wj;/;3;wj;/;4Þ is chosen

to maximize fj;/ � / under the constraints that
X4

k¼1

wj;/;k ¼ 1 and wj;/;k P 0 for k ¼ 1;2;3;4: ð32Þ
As is easily shown, this condition is achieved by setting
wj;/ ¼
~wj;/P4

k¼1 ~wj;/;k

ð33Þ
for
~wj;/;k ¼max 0; fj;k � /
� �

; k ¼ 1;2; . . . ;4: ð34Þ
A.2.1. Markov chain Monte Carlo simulation
The estimation method uses Markov chain Monte Carlo (MCMC)

simulation. For simplicity, uniform prior distributions are used for
all parameters. In any MCMC process using uniform priors, one
starts with some arbitrary guess at the parameter vector V (which
will ultimately be thrown away) and sets 1S ¼ V; then one iterates
the following steps some large number N of times. (Pre-subscripts
will be used to indicate sample number in the MCMC process and
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ordinary subscripts to indicate the coordinate within a given sam-
ple.) In the current application of this method, V comprises guesses
at the model parameters. Then6

for

nR ¼ KðCÞ
Kðn�1SÞ ð35Þ

� if nR P 1, set nS ¼ C;
� otherwise set
6 If th
nS ¼
C with probability nR

n�1S with probability 1� nR

�
: ð36Þ
In practice, to keep the computation within range of floating
point representation, one never actually computes KðCÞ or Kðn�1SÞ;
rather, one computes LogLC ¼ lnðKðCÞÞ and LogL

n�1S ¼ lnðKðn�1SÞÞ,
and then sets nR ¼ exp LogLC � LogL

n�1S

� �
.

The classical result Hastings (1970) is that in the limit as N !1
this algorithm yields a sample from the posterior density.
A.2.2. Priors
The bounds of the uniform densities one uses to define the priors

matter very little provided they are sufficiently inclusive so as not to
cut off any part of the posterior density. In the current simulations,
the prior densities of all parameters that could take signed values
were uniform between �1000 and 1000, and the prior densities on
all parameters that were required to be nonnegative were uniform
between 0 and 1000. As candidate parameter vectors C were drawn,
the program checked to make sure that each coordinate value Ck was
within the upper and lower boundaries of its prior density.
A.2.3. Adaptive candidate selection
As noted above, on the nth iteration of the MCMC process, one

randomly selects a candidate parameter vector C in the neighbor-
hood of n�1S. The window used to perform this sampling (i.e., how
one defines the sampling neighborhood) dramatically influences
the efficiency with which one can estimate the posterior joint den-
sity of the parameters. This sampling window is adjusted adaptively
after each 2000 iterations of the MCMC process. Specifically, let
Slast2000 be the matrix whose columns are the 2000 most recent
parameter vectors added to the list by the MCMC process. In each
of the subsequent 2000 iterations of the MCMC process, each suc-
cessive candidate parameter vector kC is drawn by setting
kC ¼ k�1Sþ X where the vector X ¼ ðX1;X2;XNparams Þ comprises inde-
pendent normal random variables, where E½Xj� ¼ 0 and the standard
deviation of Xj is rj

3 for rj the standard deviation of the jth column of
Slast2000. This method succeeds in achieving an MCMC process that
moves efficiently to scribble in the joint posterior density.
A.2.4. Starting values, burn-in, and number of iterations
For each of the models evaluated in this paper, several starting

points were tested. In all cases, results were robust with respect to
these variations. For the basic seed expansion model, results were
stable after 10,000 iterations. We typically collected 20,000 itera-
tions and retained the last 10,000 samples to estimate the poster-
ior density. For the 3D4C model, more samples were required. In
each run, 300,000 iterations were observed, and the last 100,000
were retained to estimate the posterior density.
e prior density fprior were nonuniform, then we would have nR ¼ KðCÞfprior ðCÞ
Kðn�1SÞfprior ðn�1 SÞ.
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