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Different laboratories have achieved a consensus regarding how well human observers can estimate the average
orientation in a set of N objects. Such estimates are not only limited by visual noise, which perturbs the visual signal of each
object’s orientation, they are also inefficient: Observers effectively use only

ffiffiffiffi
N

p
objects in their estimates (e.g., S. C. Dakin,

2001; J. A. Solomon, 2010). More controversial is the efficiency with which observers can estimate the average size in an array
of circles (e.g., D. Ariely, 2001, 2008; S. C. Chong, S. J. Joo, T.-A. Emmanouil, & A. Treisman, 2008; K. Myczek & D. J. Simons,
2008). Of course, there are some important differences between orientation and size; nonetheless, it seemed sensible to
compare the two types of estimate against the same ideal observer. Indeed, quantitative evaluation of statistical efficiency
requires this sort of comparison (R. A. Fisher, 1925). Our first step was to measure the noise that limits size estimates when
only two circles are compared. Our results (Weber fractions between 0.07 and 0.14 were necessary for 84% correct 2AFC
performance) are consistent with the visual system adding the same amount of Gaussian noise to all logarithmically
transduced circle diameters. We exaggerated this visual noise by randomly varying the diameters in (uncrowded) arrays of 1,
2, 4, and 8 circles and measured its effect on discrimination between mean sizes. Efficiencies inferred from all four observers
significantly exceed 25% and, in two cases, approach 100%. More consistent are our measurements of just-noticeable
differences in size variance. These latter results suggest between 62 and 75% efficiency for variance discriminations.
Although our observers were no more efficient comparing size variances than they were at comparing mean sizes, they were
significantly more precise. In other words, our results contain evidence for a non-negligible source of late noise that limits
mean discriminations but not variance discriminations.
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Introduction

Our perceptions result from the combination of prior
knowledge with data we gather from the environment. Of
course, the visual system cannot afford to be too meticulous
a scientist and measure everything. Real environments are
just too complex and dynamic. Instead, the visual system
often settles for being a clever statistician and quickly
estimates various visual features.
Spatial orientation (i.e., tilt) is one of those visual

features that can be estimated in just a glimpse, but
questions remain regarding how well it can be estimated.
For one thing, it is not clear why observers effectively
ignore a large proportion of visible objects when estimating
average tilt (e.g., Dakin, 2001). Another unanswered
question is why observers effectively ignore fewer objects
when estimating tilt variance. Solomon (2010) suggested
one possible answer when he noted that heuristics based on
the range of visible orientations afforded greater efficiency
for variance estimates than they did for mean estimates.

One problem with Solomon’s (2010) explanation is that
it is incomplete. The relative inefficiency of mean estimates
is only part of the story. His data also show that the
equivalent noise for judgments of mean orientation exceeds
the equivalent noise for judgments of orientation variance.
(Equivalent noise is a component of the inefficient, noisy
observer model sketched in Figure 1.) One peculiarity of
orientation is that its mean, unlike its variance, is defined on
a cyclical dimension, along which the available processing
resources (e.g., Heeley, Buchanan-Smith, Cromwell, &
Wright, 1997) and prior expectations (Tomassini, Morgan,
& Solomon, 2010) are known to vary. Solomon wondered
whether the relative imprecision of mean estimates would
be observed along other dimensions that did not share this
peculiarity with orientation. The current study was
designed to answer that question.
Of all the possible dimensions to examine, we selected

size. The main reason for this is the controversy regarding
the efficiency with which observers can estimate average
size (e.g., Ariely, 2001, 2008; Chong, Joo, Emmanouil, &
Treisman, 2008; Myczek & Simons, 2008). However, there
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is another reason, which is that we have previously found
evidence for a limit to human observers’ capacity for
multiple size estimates (Morgan, Giora, & Solomon, 2008).
Observers in that study were asked to classify the size of
one particular item in an array of distractors. The dynamic
nature of the display was designed to foil any textural
mechanisms that might operate on multiple sizes at once.
By contrast, the paradigm used in this study requires
observers to classify summary statistics of size. It therefore
encourages observers to use any textural mechanisms that
might be available.

Outline of the paper

Adopting the same numbering scheme used in
Solomon’s (2010) paper on orientation statistics, in
Experiment 1, we establish a display geometry in which
there is no crowding. In Experiment 2, we measure accu-
racy for discriminating between arrays of circles having
different mean sizes. Finally, in Experiment 3, observers
were asked to discriminate between 8-circle arrays having
different size variances.
Psychometric data from all these experiments are

compared with the performance of an inefficient, noisy
observer (e.g., Solomon, 2010). As outlined in Figure 1,

both early noise and late noise are assumed to be Gaussian.
Analytic computation of this model’s predictions is
predicated on the assumption that each sample also stems
from a Gaussian distribution. When adding external noise,
we therefore wish its distribution also to be Gaussian.
However, a Gaussian distribution of circle diameters does
not ensure a Gaussian distribution of effective sizes for size
discrimination. Although it seems reasonable to assume
that there is some smooth, monotonic transformation from
physical circle diameter to discriminable size, there is no
guarantee that transformation is sufficiently linear to
preserve the shape of the physical diameter distribution.
Indeed, Weber’s law implies a logarithmic transforma-
tion (Fechner, 1860/1966). If size discriminations do, in
fact, obey Weber’s law, then a lognormal distribution
of circle diameters will produce a Gaussian distribution
of discriminable sizes after logarithmic transduction. Our
Experiment 0 was designed to verify that size discrim-
inations do, in fact, obey Weber’s law.

Experiment 0

Weber (1851) found that “it makes no difference”
whether two lines were approximately 1 or 2 inches long;

Figure 1. The inefficient, noisy estimator of texture statistics. Intuition suggests that the visual noise added to neighboring, crowded
elements is more likely to be correlated than that added to distant elements. This possibility is approximated here by pooling stimulus
values (e.g., orientation or size) from n neighboring elements in an effectively noise-free way. An independent, identically distributed
sample of “early” Gaussian noise is then added to each pool. M pools contribute to the observer’s decision statistic, which is also subject
to perturbation by Gaussian noise (i.e., “late noise”). When, as in both the current study and Solomon (2010), texture elements are
demonstrably uncrowded, we can assume n = 1, and efficiency can be defined as M/N. In this case, the “local pools” effectively compute
local averages, but it is conceivable that they could compute some other statistic when n Q 2. Both the sample size M and the late noise
may vary with the observer’s task, butVby definitionVearly noise may vary only with the stimulus. When combined, the two sources of
noise comprise the total “equivalent noise” for the observer’s task, so called because its effects can be mimicked by perturbing the
stimulus itself (Pelli, 1990).
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the ease with which the larger could be selected depended
only on the ratio of their lengths. To evaluate the possibility
of an analogous law for circle sizes, we measured
accuracies for discriminating otherwise identical test
circles from references having diameters subtending
1.5 and 3.0 degrees of visual angle.

Methods

The experiment was conducted on a 15W MacBook Pro
computer, running the PsychToolbox (Brainard, 1997;
Pelli, 1997; software available upon request). Display
resolution was 1440 � 900 pixels. The viewing distance
was 0.5 m. A typical trial is shown in Figure 2. On each
trial, the two filled circles were presented asynchronously,
for 0.1 s each.1 There was a central cue cross. Either its left
or right spar got longer (for 0.2 s) to indicate which side
would show the first stimulus. Then, a circle was presented
on that side followed (after a 0.75-s delay) by a circle on the
other side. Subjects (authors JAS and CC) indicated which
was larger by pressing “0” if the right side disk was larger
and “1” if the left side disk was larger. No feedback was
given.

Results

Results appear in Figure 3. Although the two observers
clearly differ in their abilities, each achieves an accuracy
that seems well described by a single psychometric
function of the Weber fraction $D/D, where $D denotes
the difference between the test’s and reference’s diameters.
When two signals are perturbed by independent, identi-

cally distributed (IID) samples of Gaussian noise, accuracy

Figure 2. A typical trial in Experiment 0. All circles appeared within
1- (1.8- for JAS) of two points on the horizontal meridian, 7.3- left
and right offixation. The smaller of the two circles had a diameterD,
either 1.5- or 3.0-.

Figure 3. Psychometric functions for 2AFC size discrimination. Blue and red symbols illustrate accuracies with È1.5- and È3.0- diameters,
respectively. Small horizontal nudges have been applied for legibility. Error bars contain 95% confidence intervals. Solid gray curves

show maximum likelihood fits of the model: P Cð Þ ¼ 6
log $D

Dð Þþ1½ �
AV

� �
, where P(C) is the probability of a correct response and 6 is the

standard normal cumulative distribution function. Dashed curves show the nearly indistinguishable fit of the model: P Cð Þ ¼ 6
$D
D½ �
A

� �
. For

JAS, A = 0.14; for CC, A = 0.07. Dotted curves show the bestVbut still poorVfit of the model: P Cð Þ ¼ 6
log $D

Dð Þ2þ1
� �

AV

� �
.
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for an ideal discriminator will follow a (cumulative)
Gaussian distribution of their difference (Green & Swets,
1966). The smooth curves in Figure 3 suggest that log-
arithmically transduced circle diameters are consistent
with this prediction. To assess goodness of fit, the max-
imum likelihood of each observer’s data was computed
assuming two models: the one-parameter model

P Cð Þ ¼ 6

log
$D

D

� �
þ 1

� �
AV

0
BB@

1
CCA; ð1Þ

and a more general model having one parameter for
each data point (e.g., Watson, 1979). Neither CC’s nor
JAS’s data contained sufficient evidence to reject the one-
parameter model.2

Having insufficient data to reject alternative models of
size discrimination is not, in itself, a strong recommenda-
tion for adopting the simple model we propose. Several
types of psychometric function3 are too steep to be
compatible with an IID sample of Gaussian noise for each
signal. For comparison with our simple model, we have
adapted a suggestion from Leshowitz, Taub, and Raab
(1968) and fit our data with the more general model:

P Cð Þ ¼ 6

log
$D

D

� �k

þ 1

" #

AV

0
BBBB@

1
CCCCA: ð2Þ

If empirical psychometric functions for size discrimina-
tion were too steep to be consistent with Gaussian noise,
this general model would fit best with k 9 1. Nonetheless,
we obtained maximum likelihood fits when k = 1.03 for
JAS and k = 0.99 for CC.
Although Equation 1 therefore seems to be a good model

for size discrimination, values of parameter AVcan be hard
to interpret. On the other hand, parameter A in Equation 3
is easy to interpret. It is the Weber fraction affording 84%
correct, i.e., the just-noticeable Weber fraction (JNWF):

P Cð Þ ¼ 6

$D

D

� �
A

0
BB@

1
CCA: ð3Þ

Although not formally equivalent, dashed curves in
Figure 3 show that this alternate formula can produce
psychometric functions virtually identical to those pro-
duced by Equation 1. The maximum likelihood estimates
of the JNWF are 0.14 for JAS and 0.07 for CC.

Discussion

The good agreement between the predictions of signal
detection theory and our data allows us to be confident that
the visual system effectively perturbs logarithmically
transduced circle diameters with IID samples of Gaussian
noise when observers attempt to discriminate sizes. An
alternative model for the data of Experiment 0 excludes
non-linear transduction but includes Gaussian decision
noise that increases with circle size. Indeed, estimates
of absolute area (Teghtsoonian, 1965) and average area
(Chong & Treisman, 2003) both suggest an expansive
transduction of circle diameters. To reconcile their results
with Weber’s law, the standard deviation of early noise
would have to increase linearly with transduced size, and
no physical distribution of circle diameters could ensure a
Gaussian distribution of noisily transduced sizes. There-
fore, we have decided to reserve further attempts to
reconcile magnitude estimation with discriminability for
future discussion.
Although the performances of our observers (JNWFs

around 0.10) were similar to recently reported discrim-
inations of rectangle and oval sizes (Morgan, 2005;
Nachmias, 2008), they were significantly worse than ear-
lier reports of line discrimination (Fechner, 1860/1966,
pp. 176–197). As yet, it remains unclear whether the shape
of our stimuli (i.e., circles rather than lines) is the cause of
this discrepancy; however, intuition suggests instead that
the brief, parafoveal exposures used here might have been
the more critical factor.
It was our intention that observers make their decisions

on the basis of circle size, and their performances were
similar to previously reported discriminations of rectangle
size (Morgan, 2005). Although it remains conceivable that
our observers used mechanisms more selective for lumi-
nance energy, it seems unlikely. When identically sized
lights of different luminance are presented successively,
values for the JNWF are considerably higherVbetween
0.3 and 0.45 (estimated from results in Leshowitz et al.,
1968)Vthan the JNWFs recorded here.
Below, when attempting to create normal distributions of

transduced size, we use lognormal distributions of circle
diameter.

Experiment 1

To compare efficiencies for visual estimates of different
stimulus dimensions, it is important to ensure that measure-
ments are made in similar circumstances. Solomon (2010)
measured orientation statistics using demonstrably
uncrowded, iso-eccentric arrays containing no more than
8 objects. Adapting his methodology for size statistics, we
first attempted to ensure that 8 circles can be placed around
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fixation in such a way that none interferes with the esti-
mates of another’s size.

Methods

Solomon (2010) used a spatial pre-cue to identify which,
in an array of N randomly oriented Gabor patterns, was the
one to be remembered and compared with a subsequently
displayed Gabor at the same position. For this size exper-
iment, we slightly modified that paradigm to discourage
within-array comparisons.
There were two observers, author JAS and AT, a

postgraduate student who was naive to the purposes of this
experiment. The center of each circle was uniformly
distributed between 5.6 and 6.4- from the central fixation
spot (see Figure 4).
On each trial of the experiment, two arrays were

presented for 0.15 s each. For 1.5 s between these
presentations, only the central fixation spot was displayed.
The first array contained a single circle at a random
azimuth. The second array contained one circle at the same
azimuth and N j 1 distractors, equally spaced in azimuth
around fixation. The smaller of the two circles sharing an

azimuth was nominally the reference; the larger one was
the test. Observers were instructed to ignore the distractors
and select the display that contained the test. No feedback
was given.
For each observer, there were four randomly interleaved

conditions (JAS:N Z {1, 4, 8, 16}, AT: N Z {1, 2, 4, 8}).
The angular subtense of the reference and each distractor
was sampled from a uniform distribution between 1.5 and
1.9 degrees. At first, JAS performed 8 blocks of 100 trials
each, in which the test was either 8 or 10% larger than the
reference. Then, both observers performed 8 blocks of
100 trials each, in which the test was either 6 or 12%
larger than the reference.

Results

When there was just 1 circle in the second array
(i.e., when N = 1), this task was very similar to that
used in Experiment 0. As in that experiment, here we
used Equation 3 to estimate JNWFs. JAS’s JNWF in
Experiment 0 was not significantly different from any of
the four JNWFs estimated from his data in Experiment 1
(see Figure 5).
The effect of N on JNWF can be assessed for

significance using generalized likelihood ratios. Compar-
ison of these ratios to the chi-square distribution having
three degrees of freedom (four JNWFs for four Ns versus
the null hypothesis of one JNWF for four Ns) suggests a
19% chance of effects this large or larger, even when the
null hypothesis is true for JAS. For AT, the probability is
79%. Thus, neither JAS’s nor AT’s data contained
sufficient evidence to reject a one-parameter model.
In this experiment, the distance between circles is

determined by N. Previous research suggested a decrease
in performance once the center-to-center distance between
circles decreased beyond about half their viewing
eccentricity (Bouma, 1970; van den Berg, Roerdink, &
Cornelissen, 2007). There is no hint of this crowding in our
results, but note that circle spacing decreased beyond this
critical distance only when N = 16.

Figure 4. (Left) First and (right) second displays from a typical trial
in Experiment 1. Observers were required to report whether the
circle in the first display was larger or smaller than that circle in
the second display having the same azimuth. The various sizes of
the other circles were to be ignored.

Figure 5. Just-noticeable Weber fractions (JNWFs) for two successively displayed, differently sized circles at È6- viewing eccentricity.
Error bars contain 95% confidence intervals. There was no systematic effect of the N j 1 distracting circles on JNWF.
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Discussion

The results of Experiment 1 confirm that observers
can discriminate between successively displayed, differ-
ently sized circles at È6- viewing eccentricity, without
interference from seven similarly eccentric circles, evenly
arrayed around fixation. Circles in this configuration may
thus be considered “demonstrably uncrowded,” and thus,
we assume that the visual system is not compelled to
average their sizes (cf. Parkes, Angelucci, Lund, Solomon,
& Morgan, 2001).

Experiment 2

In this experiment, we adopt the external noise perturba-
tion technique to measuring equivalent noise and efficiency
(e.g., Pelli, 1990; Solomon, 2010) for use with psycho-
physical estimates of mean size. External noise perturba-
tion is essential for disentangling efficiency, which
describes the fraction of available information used for a
statistical summary, from equivalent noise, which limits the
precision with which that information can be used. In the
absence of external noise, decreases in efficiency become
indistinguishable from increases in equivalent noise. Such
is the case in typical feature searches (e.g., Morgan, Giora
et al., 2008; Palmer, Ames, & Lindsey, 1993), where all of
the distractors are identical.

Methods

The same general methods employed in Experiments 0
and 1 were reused in Experiment 2. In this experiment,
results were obtained from JAS plus three other experi-
enced psychophysical observers naive to the purposes of
this experiment.
On each trial, both displays contained an N-circle array

(N Z {1, 2, 4, 8}; see Figure 6). One of these arrays
was nominally the reference. Diameters in this array

were randomly selected from the lognormal distribution
lnN (lnD, AC

2), having a “baseline” diameter D that was
randomly selected from the interval [1.0-, 1.2-]. Diame-
ters in the N-circle, “test” display were randomly selected
from the lognormal distribution lnN [ln(D + $D), AC

2],
whose baseline diameter (D + $D) was greater than that of
the reference display. The same value of “stimulus SD”
AC was used for both displays. Note that AC is not the
standard deviation of circle diameters; it is the standard
deviation of discriminable sizes following logarithmic
transduction. For JAS, AC Z {0.025, 0.050, 0.10, 0.20},
and for ZC and KM, AC Z {0.015, 0.030, 0.060, 0.120}.
The reference and test displays were presented in random
order. Observers’ instructions were “If the average in the
first array was larger, press c. If the average in the second
array was larger, press m.” No feedback was given.
The Weber fraction ($D/D) was determined by one of

16 randomly interleaved QUEST staircases (Watson &
Pelli, 1983), one for each combination of N and AC. As in
Solomon (2010), trials with large Weber fractions were
introduced to measure lapses of attention. On these trials,
which had a stationary probability of occurrence of 0.1, the
staircases were ignored and ($D/D) was set to 0.4. After
one block of 80 practice trials, each observer completed
16 blocks of 80 trials each. New staircases were begun
after the fourth, eighth, and twelfth blocks.

Results

Considered en masse, just-noticeable Weber fractions
for JAS were generally higher than those of KM and
certainly higher than those of ZC and HLW. However, all
three observers suffered an elevation of JNWF when
stimulus SD was greatest, and all three observers enjoyed
a reduction of JNWFs when the number of circles per
array increased from 1 to 8 (see Figure 7).

Modeling

Human observers cannot perform visual calculations
of statistics without making errors. As diagrammed in
Figure 1, early noise can perturb each estimate of diameter,
and late noise can perturb the calculations themselves.
Moreover, these calculations may be inefficient, with
human observers effectively using only Mmean of the N
circles available in each display. Accuracy for this noisy,
inefficient (but otherwise ideal) observer is given by the
following formula:

P Cð Þ ¼ 1

2
þ 1

2
j %

� �
6

lnð1þ $D=DÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AL
2 þ 2ðAE

2 þ AC
2Þ=Mmean

q
2
64

3
75;
ð4Þ

where AC is a parameter of the lognormal distributions
from which circle diameters were drawn (see Methods

Figure 6. The two displays from a typical trial in Experiment 2.
Observers were required to report which display had the larger
average size.
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Figure 7. JNWFs between the (geometric) mean orientations (left) and just-noticeable differences (JNDs) in variance (right) of two
successively displayed, uncrowded circle arrays. SDs and variances, respectively, refer to parameters AC and AC

2 of the lognormal
distributions from which circle diameters were drawn. Numerals denote N, the number of circles per array. They have been nudged
horizontally for better legibility. Error bars contain 95% confidence intervals. Blue, red, black, and magenta curves illustrate the best
3-parameter fit to the data on the left for N = 1, N = 2, N = 4, and N = 8, respectively. (Fits to N = 4 and N = 8 were identical for subject KM.
They were also identical for HLW.) Simultaneous fits for variance discrimination, where N = 8, are shown on the right.
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section) and Mmean, AE, and AL are free parameters.
Mmean represents the number of circles observers use
when calculating the mean of each array and Mmean e N.
AE and AL represent the standard deviations of the early
and late noises, respectively. Psychometric ceiling 1 j %
was set to reflect the empirical lapse rates: % = 0.040 for
JAS, % = 0.026 for ZC, % = 0.012 for KM, and % = 0.006
for HLW. NB: The fraction in Equation 4 has a 2 inside
the square root in its denominator because of the 2AFC
paradigm; decisions are necessarily affected by the noise
in both arrays.
Equation 4 fit the data from JAS, ZC, and HLW with

maximum likelihood when Mmean = N, i.e., when these
three observers were operating at 100% efficiency.
However, fits with Mmean = min{7, N} were almost as
good. On the basis of their data from Experiment 2,
hypotheses of the form Mmean = min{Mmax, N} can be
rejected with 95% confidence only when Mmax e 3. In
other words, we can be reasonably confident that JAS, ZC,
and HLW can use more than 3 circles when estimating
mean size in a 0.15-s glimpse.
Observer KM was less efficient than JAS, ZC, and HLW.

Equation 4 fit his data with maximum likelihood when
Mmean = min{3, N}. Here, it must be noted that, unless
stated otherwise, our fits were not constrained such that
Mmean = min{Mmax, N}. Nonetheless, the maximum
likelihood fit of Equation 4 to each observer’s data was
consistent with this constraint. In KM’s case, fits
adhering to this constraint were significantly worse both
when Mmax e 2 and when Mmax Q 5. Thus, for example,
we can be reasonably confident that KM effectively uses
only 3 or 4 circles when attempting to estimate the
mean size in 4- and 8-circle arrays.
Various other (null) hypotheses regarding the noisy,

inefficient observer were tested. The only one that could be
rejected at the 0.05 level on the basis of each observer’s
data was AE = 0. ZC’s data also contained sufficient
evidence for rejecting the hypothesis that AL = 0.

Discussion

Myczek and Simons (2008) reviewed contemporary
evidence for inefficient comparisons of mean size and
concluded that there was no compelling evidence for
computations based on more than one or two items in any
given set of circles. Results from our Experiment 2 qualify
this conclusion, in the sense that they now provide
compelling evidence that some observers can use at least
3 circles in rapid estimates of average size.

Experiment 3

Solomon (2010) wondered whether the greater effi-
ciency for discriminations of orientation variance than for

discriminations of mean orientation might be due to the
cyclical nature of orientation. This question is addressed
here, where we gather data on the discrimination of size
variances for comparison with Experiment 2’s discrim-
inations of mean size.

Methods

The same general methods employed in Experiment 2
were reused in Experiment 3, with the following excep-
tions. Only arrays of size N = 8 were used in this
experiment. As before, the diameters in each array
were selected from a lognormal distribution. However,
in this experiment, the baseline diameters for test and
reference (Dt and Dr) were independently selected from
the interval (1.0-, 1.2-). Reference diameters were drawn
at random from the lognormal distribution lnN (lnDr, AC

2),
where “pedestal variance” AC

2 was a member of the set
{0.0152, 0.0302, 0.0602, 0.122}. Again, note that AC

2 is
not the variance of circle diameters; it is the variance
of sizes following a logarithmic transduction, i.e., the
sizes available to the observer for further, statistical
processing.
Test diameters were drawn at random from the log-

normal distribution lnN (lnDt, AC
2 + $AC

2). Two QUEST
staircases were randomly interleaved for each pedestal
variance to determine $AC

2, one converging on an
accuracy of P(C) = 0.67, the other converging on an
accuracy of P(C) = 0.84. As in previous studies (Morgan,
Chubb, & Solomon, 2008; Solomon, 2010), here we adopt
the atheoretical approach to defining the just-noticeable
difference (JND) between variances as the scale ! of a
cumulative Weibull distribution:

P Cð Þ ¼ 1

2
þ 1

2
j %

� �
1j exp j

$AC
2

!

 !"
2
4

3
5

0
@

1
A: ð5Þ

Psychometric functions of this form were also implicitly
assumed by QUEST, using a lapse rate (% = 0.01) and slope
(" = 20) that were determined in a pilot experiment.
Individual estimates of lapse rate were facilitated by
QUEST with probability of 0.10 on every trial and setting
$AC

2 = 0.05.
The observer’s task was to select the test. To ensure ZC,

KM, and HLW understood the task, each was told, “It may
be hard to define variance, but it’s easy to understand its
opposite. That’s when all the circles have the same size.
Your task is to select the display in which the circle sizes
are most different to each other.” After one block of
110 practice trials, ZC, KM, and HLW each completed
8 blocks of 110 trials each. JAS completed 16 blocks.
New staircases were begun after the fourth, eighth, and
twelfth blocks.

Journal of Vision (2011) 11(12):13, 1–11 Solomon, Morgan, & Chubb 8



Results

Data from all four observers exhibit an upward trend of
JND with pedestal variance (see Figure 7). A simple linear
regression of the 16 JNDs against their corresponding
pedestal values suggests a highly significant correlation:
p G 10j5.

Modeling

To establish efficiencies for discriminating size vari-
ances, we must compare human performances with the
performance of the ideal discriminator. The ideal dis-
criminator computes the sample variance in each interval
and selects the interval having the greatest sample
variance. As described above, our circles have been
selected to form a Gaussian distribution of transduced
sizes. Therefore, a proportion of their sample variances
will follow the chi-square distribution, and the ratio of two
such sample variances will follow the F distribution. To
assess human performances, here we adapt previous
derivations of inefficient, noisy versions of the ideal
discriminator for 2AFC variance discrimination (Morgan,
Chubb et al., 2008;4 Solomon, 2010) to the dimension of
size. This adaptation requires the straightforward substitu-
tion of logarithmically transduced circle diameters for
spatial orientations:

P Cð Þ ¼ 1j2%ð ÞF AC
2 þ $AC

2 þ A2
E

A2
C þ A2

E

 !
þ %; ð6Þ

where F is the (cumulative) F distribution, with degrees of
freedom Mvar j 1 and Mvar j 1. As in Equation 4, here
Mvar represents the number of circles observers use when
calculating the variance of each array and Mvar e N. AE

represents the standard deviation of the early noise, and %
is the lapse rate, empirically determined from trials in
which AC

2 e 0.0302 and $AC
2 = 0.05: % = 0.050 for JAS,

% = 0.039 for ZC, % = 0.024 for KM, and % = 0.001 for
HLW. (Small non-zero lapse rates such as this latter value
are not only computationally convenient but also, at least,
seem to be a more sensible approximation to observer
capability than a lapse rate of zero, which is what HLW’s
data actually contain.)
Note that this formula does not include a term for late

noise, which could further perturb estimates of sample
variance. Were such a term added, its distribution would
have to be convolved with the F distribution. Obtaining
maximum likelihood fits with such a complicated psycho-
metric function would not only be computationally
intractable but also necessarily overfit the data from
Experiment 3, which used just one array size, and thus
cannot simultaneously constrain the variances of early and
late noises. Consequently, readers are urged to note the
implications of non-negligible late noise for variance

discriminations. Specifically, the presence of such noise
would imply that our estimates of AE (below) are too high,
and thus, the real ratio of AL/AE for mean discriminations
may be somewhat higher than ratios calculated from those
estimates.
The availability of mean discrimination data and var-

iance discrimination data from the same observers in
otherwise identical conditions affords a statistical evalua-
tion of several hypotheses within the framework of an
inefficient, noisy observer. Adopting the constraint satisfied
by maximum likelihood fits to each observer’s data in
Experiment 2 (i.e.,Mmean = min{Mmax, N}, see above), all
responses in both Experiments 2 and 3 can be simulta-
neously fit with a four-parameter model. Maximum like-
lihood fits are shown in Figure 7. For JAS, AE = 0.077,
AL = 0.089, Mmax = 8, and Mvar = 6; for ZC, AE = 0.077,
AL = 0.058, Mmax = 8, and Mvar = 5; for KM, AE = 0.079,
AL = 0.031, Mmax = 3, and Mvar = 6; and for HLW, AE =
0.064, AL = 0.068, Mmax = 4, and Mvar = 6.
As previously noted, each observer’s data contain

sufficient evidence to reject the hypothesis that AE = 0.
Furthermore, when data from Experiments 2 and 3 are
combined, each observer’s data also contain sufficient
evidence to reject the hypothesis that AL = 0. Finally, the
95% confidence interval on Mvar for all four observers is
(5, 8).
One further hypothesis, which could not be rejected on

the basis of any observer’s data, is that Mmax = Mvar. In
other words, and in contrast to the results obtained in
experiments investigating efficiencies of summary statis-
tics for spatial orientation (Solomon, 2010), our observers
seem to have been no more efficient comparing size
variances than they were at comparing mean sizes.

Discussion

The data show that our ability to form statistical
summaries of size is qualitatively different from our
previously reported (Solomon, 2010) ability to form
statistical summaries of orientation. Although efficiencies
for mean size discrimination do differ from individual to
individual, in none of the individuals we tested was this
efficiency significantly lower than that for size variance
discrimination. On the other hand, all of Solomon’s (2010)
observers exhibited significantly lower efficiencies for
mean orientation discrimination than for orientation var-
iance discrimination.

General discussion

Our current data do not contain sufficient evidence for us
to confidently reject the proposal (Myczek & Simons,
2008) that statistical estimates may be approximated using
heuristics based on the range of visible values rather than
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their mean or variance per se. Regardless of dimension, a
noiseless observer whose decisions were based merely on
the extrema of 8 values sampled from a Gaussian
distribution would produce efficiencies of approxi-
mately 62% when discriminating between two means
and 91% when discriminating between two variances
(Solomon, 2010). These efficiencies fall within the 95%
confidence intervals inferred from each of our observers’
data.
Of course, decisions based on the extrema of visual sets

can be made only after those extrema have been identified
and that can only happen after each item undergoes some
form of analysis. Thus, we can conclude that the visual
system is quite capable of quickly producing summary
statistics of size. The formulas it uses for calculating those
statistics might differ from those used by your computer,
but its estimates are pretty good nonetheless.
The current study was designed to reveal whether mean

discriminations would have lower precision than variance
discriminations for size, a non-cyclical dimension. The
answer is yes. Just like Solomon’s (2010) investigation of
orientation statistics, our results with size statistics contain
evidence for a non-negligible source of late noise that limits
mean discriminations but not variance discriminations.
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Footnotes

1
Note that, like Ariely (2001) and Myczek and Simons

(2008), we have opted to use filled circles. Chong et al.
(Chong et al., 2008; Chong & Treisman, 2003, 2005a,
2005b) preferred empty circles. It seems unlikely that this
difference in methodology would prove critical; however,
we have not actually tested it.

2
Generalized likelihood ratios (Mood, Graybill, & Boes,

1974) are used for all statistical tests (at the 0.05 level of
significance) in this paper.

3
Such psychometric functions include those for detect-

ing a pure tone (Green, 1960) and those for detecting
modulations in luminance (Leshowitz et al., 1968).

4
This paper discusses a low-threshold extension to the

inefficient, noisy observer designed to account for “dips”
in the function mapping pedestal variance to JND. Of our
current results, only ZC’s data suggest a dip like this.
However, adding a low threshold to the model described
in Equation 6 only increased the maximum likelihood of its
fit to her data by 50%. NB: That is likelihood, not log
likelihood. Comparison of this value to the chi-square
distribution with one degree of freedom (Mood et al., 1974)
suggests a 37% chance of an increase this large, even when
the null hypothesis is true. This value might not be high
enough for us to confidently accept the (null) hypothesis of
a negligible criterion (i.e., c = 0), but it is nowhere near
small enough for us to consider rejecting it.
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