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Texture luminance judgments are approximately veridical
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Abstract

This paper investigates intensity coding in human vision. Specifically, we address the following question: how do different
luminances influence the perceived total luminance of a composite image? We investigate this question using a paradigm in which
the observer attempts to judge, with feedback, which of two texture patches has higher total luminance. All patches are composed
of nine luminances, ranging linearly from 0 (black) to a maximum luminance (white: 160 cd/m2 in one condition; 20.2 cd/m2 in
another condition). Luminance histograms of the patches being compared are experimentally varied to derive, for each luminance
n, the impact exerted by texture elements (texels) of luminance n on texture luminance judgments. We find that impact is
approximately proportional to texel luminance; That is, a texture element exerts, on average, an impact on texture brightness (i.e.
perceived texture luminance) that is proportional to its (the texel’s) luminance. The only exception occurs for texels of maximal
luminance, which surprisingly exert an impact that is slightly, but significantly, less than that exerted by texels of the next lower
luminance. We conclude that visual intensity coding for purposes of assessing overall luminance of inhomogeneous patches is
approximately veridical. In particular, texture luminance judgments are not mediated by a significant, compressive nonlinearity.
© 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Histogram contrast analysis; Texture; Brightness

www.elsevier.com/locate/visres

1. Introduction

1.1. Background

A prevailing supposition is that adaptive gain control
mechanisms play a critical role in photopic visual pro-
cessing (e.g. Barlow, 1965; Barlow & Levick, 1969;
Shapley & Enroth-Cugell, 1984; MacLeod & He, 1993;
He & MacLeod, 1996, 1998). By the time the signal
reaches the cortex, information about the mean lumi-
nance of the display being viewed has been largely
adapted out of the signal transmitted. Accordingly,
most models of cortical processing (e.g. of pattern
discrimination, spatial localization, motion sensing, or
texture segregation) currently assume that, given a stim-
ulus S (i.e. a pattern of luminances imaged on the
retina), the signal that reaches the cortex is approxi-

mated by a contrast modulation function; i.e. a func-
tion IS of the following sort:

IS(x, y, t):
S(x, y, t)− local–averageS(x, y, t)

local–averageS(x, y, t)
(1)

where local–averageS (x, y, t) is the average luminance
of S taken over all points (x %, y %, t %) in some neighbor-
hood of (x, y) during a brief time interval prior to t.

It should not be assumed, however, that the transfor-
mation of Eq. (1) is accomplished solely by the retina.
On the contrary, Makous (1997) reviews the neurophys-
iological literature pertaining to photopic, retinal lumi-
nance coding and comes to the following conclusion:
‘‘Such neurophysiological evidence as is applicable to
primate cone vision, then, shows no clear evidence of
retinal multiplicative adaptation in the cone pathway of
the parvo-ganglion cells that form some 80% of the
output of the retina and carry the signals on which,
some argue (e.g. Lennie, 1993), nearly all visual perfor-
mance is based. At least such multiplicative adaptation
is not noticeable until luminance levels exceed almost
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unphysiological levels, where the cones themselves
adapt.’’ Thus, although subtractive gain control (such
as that carried out by the numerator of Eq. (1) occurs
in the retina, current evidence argues that the retina
itself may not actually perform the divisive normaliza-
tion embodied by the denominator in Eq. (1).

Of course, the precortical coding of intensity need
not be perfectly linear. More generally, we imagine that
intensities are coded for cortical processing by a system

IS(x, y, t): f
�S(x, y, t)− local–averageS(x, y, t)

local–averageS(x, y, t)
�

(2)

for f a strictly increasing (e.g. sigmoidal) function map-
ping [−1,�) onto [0, 1).

Currently, most psychophysical researchers in the
field of luminance-defined pattern perception, bright-
ness perception and luminance-defined motion percep-
tion are willing to assume that their various target
processes are preceded by an up-front transformation
of the general form captured by Eq. (2).

It is well-known (Weber’s law for luminance) that the
threshold luminance increment required to detect a
patch of light on a uniform background of luminance b
is approximately proportional to b. (It should be noted,
however, that Weber’s law is found only after long term
adaptation to luminance b, and holds well only for low
frequency test stimuli (Yang & Makous, 1995).) The
brighter the background, the greater the increment
required to support threshold detection performance.
Specifically, for a, the ‘Weber fraction,’ performance at
detecting a patch of luminance b+d on a background
of luminance b is found to be at threshold when d is
approximately ab. Contemporaneously, Fechner (1860)
and Maxwell (1860) both inferred from this result that
the transformation mapping luminance onto perceived
intensity involved a logarithmic compression: after all,
if perceived–intensity(b)= log(b), then consonant with
Weber’s law, perceived–intensity(b+ab)−perceived–
intensity(b)=k, for k=perceived–intensity(1+a).
Maxwell proposed that this compression results from
cone saturation. By contrast, Fechner thought that the
cones were veridical (i.e. linear) luminance transducers,
but that the mapping of retinal responses onto subjec-
tively experienced intensity was compressively
nonlinear.

However, Weber’s law need not imply that luminance
is transformed by an instantaneous nonlinearity, as
Fechner and Maxwell both assumed (e.g. Luce & Ed-
wards, 1958; Falmagne, 1971). Indeed, Weber’s law is
an obvious consequence of Eq. (2), provided the func-
tion f is approximately linear in the neighborhood of 0.
Eq. (2), though, implies a fundamentally different cod-
ing scheme than an instantaneous, compressive nonlin-
earity. Note, in particular, that for a fixed value m of
local–averageS(x, y, t) (i.e. a fixed state of adaptation)

IS(x, y, t): f
�S(x, y, t)

m
−1

�
(3)

That is, for luminances S(x, y, t) that are not too large
in comparison to m (and hence in the linear domain of
f ), the model of Eq. (2) implies that the subcortical
representation of intensity is approximately a linear
function of S(x, y, t) (not a logarithmic compression).

1.2. The goal of the current experiments

The experiments reported here attempt to shed light
on visual intensity coding by investigating performance
in a novel luminance discrimination task. In this task,
given a single, brief display, the observer is required to
judge which of two texture patches has greater total
luminance. The patches are composed of many small
square texture elements (texels), each of which is
painted with one of nine, linearly increasing lumi-
nances, spanning a broad range. Thus, the judgment
requires the observer to additively combine the subjec-
tive intensity representations produced by the compo-
nent texels. We use the methods of histogram contrast
analysis (Chubb, Econopouly & Landy, 1994; Chubb,
1999) to measure, for each luminance, n, the average
impact m(n) exerted by n on texture brightness (i.e.
perceived texture luminance).

What is the concrete meaning of the texture bright-
ness function m? It should be noted first that our
measurement methods allow us to determine m only up
to an arbitrary positive scale factor and an arbitrary
additive constant. In other words, we cannot determine
the mean value of m ; nor can we determine the absolute
amplitude of m’s deviation from its mean. What we can
determine are the relative deviations of all of m ’s values
from m ’s mean value.

In order to explain the convention we use to scale m,
it will be useful to consider the following hypothetical
texture brightness judgment: imagine a texture patch
Patchl containing equal numbers of all nine luminances,
randomly permuted within a rectangular region. Such a
texture patch is said to have a uniform histogram. Now
imagine producing another texture patch Patch2, also
with a uniform histogram, and then replacing a ran-
domly chosen texel in Patch2 with a texel of luminance
n to produce a new patch Patch2,Altered. Then m(n)
reflects the expectation of the difference in the bright-
ness of Patch2,Altered compared to Patch1.

The magnitude of m(n) can be understood in terms
of a hypothetical experiment in which the observer is
repeatedly asked to judge which is higher in luminance,
Patch1 versus Patch2,Altered (where the construction of
each patch is carried out independently on each trial).
Suppose that m(n)=0.01. This indicates that the alter-
ation produces, on average, an increase in patch bright-
ness equal to 0.01 standard deviations of the total noise
by which the observer’s comparisons of patch bright-



J.-H. Nam, C. Chubb / Vision Research 40 (2000) 1695–1709 1697

ness are degraded. Thus, if m(n)=0.01, then the ob-
server will judge Patch2,Altered more luminant than
Patch1 with probability slightly greater than 0.5. Spe-
cifically, for F the standard normal cdf, the observer
will judge Patch2,Altered more luminant than Patch1 with
probability F(0.01)=0.504. On the other hand, if
m(n)= −0.023, then the observer will judge
Patch2,Altered more luminant than Patch1 with probabil-
ity less than 0.5, specifically, with probability F(−
0.023)=0.491.

1.3. What is the relationship between the texture
brightness impact function m and the function f
(of Eq. (2))?

The relationship between subcortical intensity coding
and the texture brightness impact function m may well
be complex. It would be ill advised simply to assume
that m must be one and the same as the function f of
Eq. (2). Indeed, it is not hard to imagine scenarios in
which m differs in important ways from f. For example,
suppose that the observer attempts to judge texture
luminance by summing the activations produced by a
certain array of neurons in the cortex whose input is
given by Eq. (2). Unless the responses of the neurons in
this cortical array depend linearly on their inputs, m
will surely differ in form from f. However, there is a
wealth of evidence (e.g. simultaneous contrast and re-
lated effects) to suggest that the brightness of a homo-
geneous region (such as a texel) depends in complex,
nonlinear ways on the context (i.e. the surrounding
constellation of luminances) in which that region occurs
(e.g. Grossberg & Todorovic, 1988). Thus, we must be
alert to the possibility that the form of m may well
depend not merely on f but also on nonlinear interac-
tions between neurons in the hypothetical array mediat-
ing texture brightness judgments. We shall take up this
issue in greater detail in Section 4.

1.4. List of symbols

For the reader’s convenience, we include the follow-
ing listing of the symbols we use in this paper. Most of
the terms in this list have yet to be defined. A reason-
able strategy is to skip past this list on initial reading
and refer back to it as necessary.

the set of luminances of which textureG
patches will be composed.

n a luminance in G.
a texel (i.e. a small, rectangular region int

a texture patch to be painted with some
luminance of G).
texel distributions (i.e. probability distri-q, r
butions on G).

an IID texture patch with texel distribu-Pq

tion q. Thus, the luminances of the tex-
els of Pq are jointly independent random
variables all with distribution q.
the luminance (from G) assigned byPq(t)
patch Pq to texel t. Thus, Pq(t) is a ran-
dom variable with distribution q.
the set of all texels of which Pq is com-dom(Pq)
posed.
The subjective estimate of the luminanceL(Pq)
of IID texture patch Pq (Eq. (4)). (L(Pq)
is a random variable.)
A normal random variable with mean 0Y
and standard deviation s (Eq. (4)).
The random variable that determines theD(q, r)
observer’s decision as to which is more
luminant, Pq vs. Pr (Eq. (4)).
A random variable produced by texelXq(t)
t�dom(Pq) that will additively influence
L(Pq).
The cdf of random variable Xq(t), givenFn

that Xq(t)=n (Eq. (5)).
jn A random variable with cdf Fn.

The expectation of the impact exerted onm(n)
texture brightness by an occurrence of a
texel of luminance n (Eq. (6)).
The function m :G�R is called the (tex-m
ture brightness) impact function.
The standard deviation of the impact ex-s(n)
erted on texture brightness by an occur-
rence of a texel of luminance n (Eq. (6)).
The function s :G�R is called the (tex-s
ture brightness) noise injection function.
The square of the noise injection func-s2

tion s. That is, s2(n)= (s(n))2 for all
n�G.

f · g for any functions f :G�R and g :G�R,
f · g=Sv�G f(6) g(6)
A function mapping dom(Pq) into RWPq

reflecting the different weights (e.g. due
to nonhomogeneous allocation of atten-
tion) with which the random variables
Xq(t) are combined to produce the patch
luminance estimate L(Pq).
Sum of WPq

(t) over all texels t inK1

dom(Pq) (Eq. (8)).
K2 Sum of WPq

2 (t) over all texels t in
dom(Pq) (Eq. (9)).
The uniform texel distribution on G (Eq.U
(11)).

u(or ui) A reversible U-modulator (Sec. 1.7.1).
The component of 6ar(D(U+u, U−u))A
that does not depend on m (Eq. (13)).
Model parameter governing the degreeB
to which 6ar(D(U+u, U−u)) depends on
m (Eq. (13)).



J.-H. Nam, C. Chubb / Vision Research 40 (2000) 1695–17091698

1.5. IID textures

The methods used here are a variant of those used by
Chubb et al. (1994). In the experiments to be described,
the observer is asked on each trial to judge which
of two abutting, rectangular texture patches (the
right patch or the left patch) has higher total lumi-
nance.

All of the textures we use will be generated from a set
G comprising nine luminances, ranging linearly from
black to white. We use exclusively IID texture patches,
i.e. patches in which the intensities of all texture
elements are jointly independent, identically dis-
tributed, random variables. The probability distri-
bution from which texel intensities are drawn to gener-
ate a given patch is called the texel distribution of the
patch.

It will be convenient to write Pq for an IID texture
patch with texel distribution q. For any texel t in the
patch, we shall write Pq(t) for the luminance assigned
texel t in Pq. Thus, to generate Pq one might load
tokens of different intensities into an urn, such that, for
any possible luminance n, the proportion of tokens in
the urn of luminance n is q(n). Then intensities could be
assigned to the texels of Pq by successive draws
(with replacement) from the urn. Note that the lumi-
nance histogram of Pq will be likely to resemble q in
form, but will almost certainly differ from q in random
detail.

Fig. 1 shows examples of IID textures composed
from G. Within each of the IID texture patches
of Fig. 1A–F is a bar graph that shows the texel
distribution used to generate the patch. The lum-
inances of G are arranged in increasing order along
the bottom of the bar graph. The height of each bar
above a given luminance n shows the probability
that a given texel will be assigned luminance n. Note
that the texel distribution of Fig. 1A has a higher
mean luminance than that of Fig. 1B, yielding an
obvious difference in brightness between the two
patches. Evidently texture brightness is determined
largely by texture mean luminance; however, other,
higher order moments of the texel distribution
may also influence patch brightness. The current
experiment measures these secondary influences. The
IID patches in Fig. 1C–D are equal in expected
texel luminance, but differ in variance, leading to a
difference in the apparent contrast of the two
textures. The patches in Fig. 1E–F are equal in both
expected texel mean and variance; however, they
differ in their higher central moments. The fact that
there is no very obvious difference in texture brightness
between any of the patches 1C,D,E and F adumbrates
the main result of this paper: texture luminance judg-
ments depend approximately linearly on texel lumi-
nance.

1.6. Model assumptions

In attempting to judge whether patch Pq is more
luminant than patch Pr, the observer is assumed to
construct (noisy) subjective patch luminance assess-
ments L(Pq) and L(Pr). Then, for Y a normal random
variable with mean 0 and standard deviation s, the
observer is assumed to judge Pq more luminant than
Pr iff

D(q, r)=L(Pq)−L(Pr)+Y\0. (4)

The random variable Y occurring in Eq. (4) is intended
to capture trial-to-trial variability that is independent of
the texel distributions q and r. The standard deviation s

of Y might depend on a broad range of factors, includ-
ing the size and shape of a patch, the specific
luminances in G, the viewing distance of the observer,
etc.

The strongest model assumptions concern the pro-
duction of random variables L(Pq) and L(Pr). For any
texel t of Pq, the micropattern Pq(t) is assumed to
generate a random variable Xq(t). (These texel-gener-
ated random variables will be linearly combined to
generate L(Pq).) The random variables Xq(t), for all
texels t of Pq, are assumed to be jointly independent
and identically distributed.

In addition, for any given luminance n, the distribu-
tion of the random variable Xq(t) generated by paint-
ing texel t with luminance n is assumed invariant with
respect to q. To frame this assumption more precisely,
we need the following notion.

1.6.1. Definition (of the conditional cdf Fn)
For any distribution q on G, any texel t, and any

luminance n�G, the conditional cdf of Xq(t) given that
Pq(t)=n is defined by

F6(x)=P[Xq(t)5x � Pq(t)=n ]. (5)

As suggested by the notation used in Eq. (5), it is
assumed that Fn does not depend upon q. In particular,
this means that the functions

m(n)=E [Xq(t)�Pq(t)=n ] and

s(n)=std–dev[Xq(t)�Pq(t)=n ] (6)

are assumed invariant with respect to texel distribution
q. For any n�G, m(n) determines the expected impact
on L(Pq) exerted by an occurrence in patch Pq of a
texel of luminance n. Accordingly, m is called the
(texture brightness) impact function. On the other
hand, s(n) determines the amount of variability in-
jected, on average, into L(Pq) by a texel of luminance n.
Thus, s is called the (texture brightness) noise injection
function.

It is important to note that, although L(Pq) is as-
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sumed to be a linear function of the random variables
Xq(t), the expectations of these random variables are
not necessarily assumed to be linearly related to the
corresponding luminances Pq(t). In other words, the
impact function m is not required to be linear.

As discussed elsewhere (Chubb, 1999), it is not plau-
sible to assume that the conditional cdf’s Fn,n�G, are

invariant with respect to texel distribution across the set
of all IID textures; however, this assumption is likely to
hold approximately across a family of textures whose
texel distributions all differ only slightly from the uni-
form distribution U (See Eq. (11)), as is the case in the
current experiment.

We assume now that L(Pq) is produced by additively

Fig. 1. Examples of visual IID texture patches. The set G used to generate the IID texture patches shown here contains nine small squares of
(approximately) linearly increasing luminance. (A) A patch of IID texture containing NTex=30×30=900 texels. The bar graph enclosed in the
patch shows the texel distribution used to generate the patch. The luminances of G are arrayed in increasing order along the bottom of the bar
graph. The height of the black bar above each luminance n is proportional to the probability that a given texel in the patch will be assigned
luminance n. Thus, the texel distribution of Fig. 1A increases linearly with luminance. (B) A patch of IID texture whose texel distribution decreases
linearly with luminance. (C) A patch of IID texture whose texel distribution varies quadratically with texel luminance. (D) A patch of IID texture
whose texel distribution varies quadratically, but inversely to that of (C); (E) and (F) are patches of IID texture whose texel distributions have
equal mean and variance, but which differ in their third and higher order, odd moments. The fact that there is no obvious difference in overall
brightness between any of the patches C, D, E and F adumbrates the main result of this paper: texture luminance judgments depend
approximately linearly on texel luminance.
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combining the random variables Xq(t). However, we
admit the possibility that the random variables pro-
duced by texels in different locations may be combined
with different weights (e.g. due to inhomogeneous allo-
cation of attention across patch Pq). Specifically,
for some function W :texels of Pq�R, it is assumed
that

L(Pq)= %
all texels t of Pq

W(t)Xq(t). (7)

The function W is called the texel weighting
function for patch Pq. Although it is natural to
suppose that W is everywhere nonnegative, the theory
does not require this assumption. It is, however, re-
quired that the sum of W over all texels of Pq be
positive.

Two additional assumptions (captured in Eqs. (8)
and (9)) are required to effectively insure that the texel
weighting functions for patches Pq and Pr are compara-
ble in their spatial sampling properties. (These assump-
tions are very reasonable in the current experiment
because the locations (left versus right) of patches Pq

and Pr are randomly assigned from trial to trial; in
essence, the patches Pq and Pr probabilistically share
the same spatial locations.) For WPq

and WPr
the texel

weighting functions for patches Pq and Pr, it is assumed
that

K1= %
all texels t in dom(Pq)

WPq
(t) = %

all texels t in dom(Pr)

WPr
(t)

(8)

and also that

K2= %
all texels t in dom(Pq)

WPq

2 (t) = %
all texels t in dom(Pr)

WPr

2 (t).

(9)

1.7. Measuring the texture brightness impact function

For any functions f :G�R, g :G�R, we write f · g for
the cross-correlation of f with g :

f · g= %
n�G

f(n)g(n). (10)

In the experiments to be described the texel
distributions of the textures compared on a given
trial are manipulated to infer the form of the
texture brightness impact function m. As shall be
shown, these methods yield results that are invariant
with respect to all unmeasured model parameters (in-
cluding the standard deviations s(n), n�G). The
following notion is required to describe the experi-
mental manipulations used to measure the impact
function m.

1.7.1. Definition of a re6ersible modulator
Let h be a texel distribution. Then any function

u :G�R is called an h-modulator if h+u is a texel
distribution. If h−u is also a texel distribution, then u

is called reversible.
In the experiments to be described, the texel distribu-

tions of patches being compared are modulated away
from the uniform distribution U :

U(n)=
1
9

, n�G. (11)

In particular, our methods exploit the following result,
derived in the Appendix. Let F denote the standard
normal cdf. Then under the model assumptions de-
scribed above, for any U-modulator u, the probability
p(u) that the observer judges PU+u more luminant than
PU−u is given by

p(u)=F
� m · u

{A+B(m2·U− (m · u)2)}1/2

�
(12)

for

B=
K2

2K1
2 and A=B

�
s2 · U+

s2

2K2

�
. (13)

The argument to F in Eq. (12) is a signal-to-noise ratio;
the numerator is proportional to the mean, and the
denominator to the standard deviation of the random
decision variable D(U+u, U−u) (See Eq. (4)). Note
that the term A in the denominator captures the por-
tion of the variance that does not depend on m. For
purposes of comparing impact functions m across
observers, it will be convenient to express m in multi-
ples of 
A. For m expressed in this way, Eq. (12)
becomes

p(u)=F
� 
Am · u

{A+B((
Am)2 · U− ((
Am) · u)2)}1/2

�
=F

� m · u

{1+B(m2 · U− (m · u)2)}1/2

�
. (14)

2. Experimental procedure

Our strategy for measuring m is simple. We select a
number of U-modulators u1,u2,…, uNconds, defining our
different experimental conditions. On a given experi-
mental trial, for some condition i=1, 2,…, Nconds, the
observer is required to judge (with audible feedback on
each trial) which of patches PU+ui

vs. PU−ui
is more

luminant. In all cases ui is chosen so that U−ui is
slightly more luminant than U+ui. However, all condi-
tions are constructed so that the observer is inconsistent
to some degree in performing this task (neither always
correct, nor always incorrect).

For each condition i, some number of trials are
conducted, yielding ki correct and ni incorrect re-
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sponses. The total number of trials in condition i is thus
ni+ki. This number differs across conditions and from
observer to observer, with more informative conditions
receiving more trials.

The resulting data are processed to obtain a maxi-
mum likelihood estimate of the texture brightness im-
pact function m. Specifically, the value of B as well as
those of m(n), n=0, 1,…, 8 are found so as to maxi-
mize the likelihood function

L(m, B)= 5
Nconds

i=1

p(ui)
ki (1−p(ui))

ni, (15)

where p(ui) is defined by Eq. (14). Matlab code to
accomplish the model fitting is available on the web at
http://texel.ss.uci.edu/ChubbAddenda.html.

2.1. Apparatus

The experiment was conducted for two observers
using a mean luminance of 80 cd/m2, and for two
observers using a mean luminance of 10 cd/m2. The
monitors differed for these two luminance conditions.
For the high mean luminance condition, an Ikegami
DM516A monochrome monitor was used. For the low
mean luminance condition, a TVM high-resolution
monochrome monitor, model MG-11P U03 was used.
In both cases, the stimuli were presented using an
IBM-compatible computer equipped with an ATVista
graphics system.

2.2. Obser6ers

Two of the authors (JN and CC) and one additional
experienced psychophysical observer (JM) were used in
this experiment. Two observers (JN and CC) had cor-
rected-to-normal vision. The other (JM) had
normal vision. One observer, JN, participated in
both the high luminance and low luminance experi-
ments. CC participated only in the high luminance
experiment; JM participated only in the low luminance
experiment.

2.3. Stimuli

All stimuli were composed of small square texels,
painted with one of 9, linearly increasing intensities.
For the high mean luminance condition, these intensi-
ties were 20i cd/m2, i=0, 1,…, 8. For the low mean
luminance condition these intensities were 2.5i cd/m2,
i=0, 1,…, 8. A stimulus in a given trial comprised two
abutting texture patches (one on the left, and one on
the right), each composed of 30 rows by 15 columns of
texels. Each texel (5×5 pixels) subtended 6.68 min2.
The viewing distance in the high (low) luminance condi-
tion was 136 (75) cm.

2.4. Conditions

On a given trial, the observer was asked to judge
which of the component IID texture patches PU+ui

vs.
PU−ui

had greater total luminance. The specific modu-
lators used (as well as the rest of the raw data) are
available on the world wide web at texel.ss.uci.edu/
ChubbAddenda.html. There were 120 conditions (mod-
ulators) in all.

These modulators are selected to span the space of all
candidate impact functions. Additionally, each modula-
tor ui, is constructed so that, in practice, the total
physical luminance of PU+ui

is practically certain to be
greater than the total luminance of PU−ui

. Thus, on a
trial in which the subject is required to judge which of
PU+ui

vs. PU−ui
has greater luminance, the correct

response is PU+ui
. Finally, all conditions are chosen so

that performance is a priori likely to be neither perfect,
nor at chance.

Different observers collected different amounts of
data in different conditions. In the low luminance ex-
periment, observers JN and JM each performed a min-
imum of 100 trials in each condition. In the high
luminance experiment, JN performed a minimum of
130 trials in each condition, while CC performed a
minimum of 82 trials in each condition. Thereafter,
additional trials were run only in the most informative
conditions (conditions yielding performance in the steep
region of the psychometric curve). The experiment was
conducted in blocks of 240 trials. In those blocks in
which all 120 conditions were mixed, each condition
occurred twice, once with patch PU+ui

on the right and
once on the left. Trials were randomly sequenced. In
those blocks focusing on informative conditions, a min-
imum of 30 conditions (each receiving 8 trials) were
randomly mixed. In all, JM (low luminance) ran 18,866
trials; JN (low luminance) ran 16,800 trials; CC (high
luminance) ran 19,312 trials; JN (high luminance) ran
27,340 trials.

2.5. The structure of a trial

A trial consisted of the following steps: the observer
fixated a small central cue spot, then initiated a trial
with a button press. The cue spot disappeared, and the
pair of patches was presented for 33 ms, and then
replaced by the cue spot again. The observer then was
asked to report (with a button press) which of the two
patches had the higher total luminance. Following the
observer’s response, an auditory signal was given if it
was wrong.

2.6. Linearization

For the low-luminance experiment, linearization was
achieved using a by-eye procedure in which a regular
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grid of texture elements containing three intensities
lumlo, lumhi and lummid (half with luminance lummid, 1/4
with lumlo and 1/4 with lumhi) was made to alternate in
a coarse vertical square-wave with texture comprising a
checkerboard of texture elements alternating between
intensities lumlo and lumhi. The screen was then viewed
from sufficiently far away that the fine granularity of
the texture was barely visible. At this distance, the
square-wave modulating between the two types of tex-
ture had a spatial frequency of approximately 4 c/deg.
Since the texture itself could not be resolved, the
square-wave is visible only if the mean luminance of
alternating texture bars is different. Thus, the lumi-
nance lummid that makes the square-wave vanish is
equal to the average of the intensities lumlo and lumhi.
We generated a lookup table by reiterating this proce-
dure with different luminances lumlo and lumhi to deter-
mine, in each case, the lummid midway between lumlo

and lumhi.
One might wonder why we use a three-luminance

checkerboard rather than a uniform field of luminance
lummid in our linearization display. On most monitors,
two horizontally adjacent bright pixels on a black back-
ground emit more than twice the light emitted by a
single bright pixel. More generally, the amount of light
emitted by a block of pixels cannot, typically, be
derived from the individual amounts of light emitted by
pixels turned on in isolation. In other words, monitors
often manifest spatial display nonlinearities. What is
important in the current experiment is that the amounts
of light emitted by square pixel-blocks of a particular
fixed size be linearized. The three-luminance checker-
board was used rather than a uniform field of lumi-
nance lummid in order to achieve this goal. In the
three-luminance checkerboard, each check of luminance
lummid was (i) equal in size to the checks used in our
experimental textures, and (ii) surrounded on all four
adjacent sides by squares of luminance either lumlo or
lumhi.

A similar by-eye procedure, with a somewhat differ-
ent test stimulus, was used to linearize the high-lumi-
nance display. In this case, we were able to ascertain
that the monitor (an Ikegami DM516A monochrome
monitor) was remarkably free from spatial nonlineari-
ties of the sort discussed above. Accordingly, we used a
linearization stimulus in which uniform bars of lumi-
nance lummid were made to alternate in a coarse vertical
square-wave with texture comprising a checkerboard of
texture elements alternating between intensities lumlo

and lumhi.

3. Results

Raw data are available on the world wide web at
http://texel.ss.uci.edu/ChubbAddenda.html.

Maximum likelihood estimates of parameter B (Eq.
(14)), as well as parameters m(n), n�G, were obtained
using the Matlab program Fit–m–IID.m also available
at http://texel.ss.uci.edu/ChubbAddenda.html. Esti-
mated values of B were near 0 in all cases: for CC,
B. =0.076; for JM, B. =0.034; for JN in both the high
and low luminance conditions, B. =0.000. These small
values of B. indicate that the variance of the decision
variable D(U+u, U−u) depended very little on m.
Indeed, for CC (for whom B. was the largest), only
0.0007% of nar [D(U+u, U−u)] depended on m, on
average. Thus, for all observers, this term could have
been omitted from the model without significantly alter-
ing the estimated impact functions, m.

Estimated (maximum likelihood) texture brightness
impact functions are plotted in Fig. 2. The top (bottom)
two boxes of Fig. 2 show the impact functions for low
(high) mean luminance textures. (Error bars give boot-
strapped 95% confidence intervals for the estimated
impact function values.)

Thus, for example, the fact that the texture bright-
ness impact function for observer JM assigns the value
−0.012 to luminance 0 indicates that an occurrence of
a texel of luminance 0 in a patch has (on average) the
effect of decreasing the brightness of the patch by 0.012
standard deviations of the total noise compromising
JM’s judgments.

The texture brightness impact functions are similar
for all observers, irrespective of the mean luminance of
the display. Note in particular that there are no dra-
matic differences between the estimates obtained in the
low versus high luminance conditions. In all cases, the
impact exerted on patch brightness increases as an
approximately linear function of texel luminance. The
only significant departure from this pattern occurs at
the highest luminance: for all observers in all condi-
tions, the impact on patch brightness exerted by texels
of the highest luminance is less than or equal to the
impact exerted by texels of the next-to-highest
luminance.

This pattern emerges very clearly in Fig. 3, in which
we have taken the liberty of fitting our model to the
pooled data from our four observers. Although we use
this curve to summarize the main patterns in our data,
it should be noted that there are indeed statistically
significant differences across conditions and between
observers. In particular, the impact function produced
by JN in the low luminance condition differs markedly
from the other three curves at the lowest luminance.
Indeed, an infinitesimal p-value is derived from a likeli-
hood ratio test comparing the fit provided by the ten
parameters used to generate Fig. 3 (the nine values of m
shown in the figure, plus the estimate of B, which was
0.000) to the 40 parameter fit obtained by modelling the
data of each observer separately. This shows that at
least some of our four observers differed significantly in
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Fig. 2. Texture brightness impact functions. The top two boxes of Fig. 2 show the impact functions for low (high) mean luminance textures. Error
bars give bootstrapped 95% confidence intervals for the estimated impact function values. Thus, for example, the fact that the texture brightness
impact function for observer JM assigns the value −0.012 to luminance 0 indicates that the effect of substituting a randomly chosen texel in a
patch with a uniform histogram by a texel with luminance 0 is to lower patch brightness by 0.012A0.5, for A0.5 defined by Eq. (13); A0.5 is the
standard deviation of that component of the noise degrading the observer’s judgments that does not depend on the texture brightness impact
function. Model fits show that the component of the noise that does depend on the impact function is negligible. Thus A0.5 is effectively the
standard deviation of the total noise degrading judgments.

their response patterns. In particular, although the
curves obtained in the high versus the low luminance
conditions appear quite similar, our data reject the
hypothesis that the curves were generated by the same
process; thus, we cannot conclude that the texture
brightness impact function is independent of stimulus
mean luminance.

The curve of Fig. 3 rises almost perfectly linearly
over the lower eight luminances. Interestingly, the curve
seems to show a slight nonmonotonicity for the highest
luminance. Texels of the highest luminance exert
slightly but significantly less impact on patch brightness
than do texels of the next lower luminance. This same
effect is to be seen in the data of both JN (low
luminance condition) and JM (low luminance condi-
tion); in each case, the estimated impact exerted on
patch brightness by texels of the highest luminance falls
below the 95% confidence interval for the estimated
impact exerted by texels of the next lower luminance.

4. Discussion

4.1. The possible influence of context effects

Our model assumes that individual texels in a patch
generate jointly independent random variables that are
combined in a weighted sum to estimate patch lumi-
nance. However, the assumption of independence is
almost certainly wrong. Consider a texel t of luminance
n : phenomena such as simultaneous contrast suggest
that the context in which t occurs (i.e. the constellation
of luminances surrounding t) may play an important
role in determining t ’s brightness. Plausibly, in the
randomly scrambled textures used in the current exper-
iments, only t ’s very local context differentially influ-
ences t ’s brightness. One must remember, however,
that within a texture patch there are many texels of
luminance n occurring in many different local contexts.
Due to their different contexts, these different texels of
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Fig. 3. Average texture brightness impact function. A maximum likelihood estimate of the texture brightness impact function derived from the
data pooled across all observers and conditions. Error bars give bootstrapped 95% confidence intervals for the estimated impact function values.
Note (i) the linearity of the function across the lower eight texel luminances, and (ii) the slight but significant failure of monotonicity for the
highest texel luminance.

luminance n may well have different brightnesses. Sup-
pose it is these different brightnesses that are added
together to estimate the luminance of a texture patch.
(Note, however, that this need not be the case. Individ-
ual texel brightnesses, such as might be gauged by
asking the observer to make judgments about single
texels, may have nothing to do with assessments of
texture brightness.) These different contexts, then, in-
troduce variability in texel brightness, and thus (under
our supposition that texture brightness is assessed by
adding up texel brightnesses) influence the noise injec-
tion function s.

What interpretation should we give to the texture
brightness impact function m in light of such context
effects? Our answer rests on the following observations.
First, because the patches used in our experiments are
fairly large, the luminance of a texel is approximately
independent of the local context in which that texel is
embedded (i.e. one’s ability to predict the luminance of
a given texel is improved very little by knowing the
local context of that texel.) Second, in all experimental
conditions we use histograms that differ only slightly
from the uniform histogram (only up to the modest
levels sufficient to support less than perfect perfor-

mance at judging patch luminances). Thus, the distribu-
tion of available contexts differs little across different
textures actually used; in each case the distribution of
local contexts is approximately uniform (rendering all
local contexts approximately equally probable). Sum-
marizing: in any given experimental condition, the dis-
tribution of local contexts is approximately identical for
texels of all luminances; moreover, this distribution of
contexts is approximately uniform (all local contexts
equally probable) across the different conditions used in
these experiments. Thus, for any texel luminance n,
m(n) approximates the average impact (across all differ-
ent local contexts) exerted on the brightness of a uni-
formly distributed texture patch by a texel of luminance
n.

4.2. The de6iation of the texture brightness impact
function from the power law for brightness

As Stevens (1961, 1962, 1967) and Stevens and
Stevens (1963) emphasized, direct judgments of the
brightness are related, over many log units, to lumi-
nance by a power function. The exponent of the power
function depends on various aspects of the stimulus



J.-H. Nam, C. Chubb / Vision Research 40 (2000) 1695–1709 1705

such as the size of the target, the state of adaptation of
the observer, the context in which the target appears,
etc. For a small spot (5 min) viewed by a dark adapted
observer, the exponent of the power function is around
0.33 (Stevens, 1967). Adaptation to higher light levels
tends to elevate the exponent to higher values less than
1. Of course, Stevens’ paradigm (magnitude estimation
of the brightness of an isolated patch of light) is
fundamentally different from the methods used here.
Most importantly, Stevens’ observers were basing their
judgments on a single target (rather than a texture) and
assigning a number (without feedback) to the percept
elicited by that target (rather than making a binary
forced choice, with feedback). Nonetheless, it is instruc-
tive to see how well power functions fare in fitting the
current data.

Note that the obtained texture brightness impact
functions are approximately linear (yielding veridical
intensity representation) over our middle seven texel
luminances, and (over these luminances) the curves
agree well across conditions and observers. However,

for luminance 0, there is substantial variability between
observers in the value of m(0) obtained. Most notably,
for JN the estimate of m(0) obtained in the low
luminance condition is much lower than the
estimates obtained for the other observers in other
conditions. Moreover, for both observers in the low
(high) luminance condition, texels of the highest lumi-
nance exerted an impact on texture brightness that was
slightly but significantly lower than (no greater than)
the impact exerted by texels of the next lower lumi-
nance.

Thus, it is really only over the middle seven texel
luminances that luminance is veridically coded for pur-
poses of making texture brightness judgments. How-
ever, this range (from 2.5 to 17.5 cd/m2 in our low
luminance condition) spans only 0.85 log units. Plausi-
bly, a power function might reasonably fit the data over
such a restricted region. To test this possibility, power
functions were individually fit (using a least-squares
method) to the seven middle data points of each ob-
server. The results are shown in Fig. 4.

Fig. 4. Power function estimates of texture brightness impact functions. Least-squares estimates of power functions fit to the middle seven data
points of the estimated texture brightness impact functions. Impact functions have been shifted upward to optimize fits to these middle seven
values. Power function exponents are 0.60 for JM (low luminance condition) and JN (in both high and low luminance conditions), and 0.48 for
CC (high luminance condition). Note (i) power functions provide a reasonable fit to the obtained impact functions over the middle seven texel
luminances, but (ii) tend to undershoot impact function values for texel luminance 0, and (iii) overshoot impact function values for the maximum
texel luminance.
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Recall that the texture brightness impact function
is only defined up to an arbitrary additive con-
stant and positive scale factor. Thus, when we attempt
to approximate m by a power function (of the form
a6b+c), the parameters a and c are unconstrained by
the data; only the exponent b is significant. For each of
JN and JM in the low luminance condition, as well as
JN in the high luminance condition, the least-
squares estimate of the power function exponent was
0.60. For CC (high luminance condition), the exponent
was 0.48.

In each case, the power function provides a
reasonable fit to the middle seven data points. Indeed,
for JN in the low luminance condition, the power
function does a moderately good job at approximating
the impact function for all except the highest texel
luminance. For all other observers, the power function
both overshoots the impact function for the highest
luminance and undershoots it for texel luminance 0.

We conclude that (i) the apparent linearity of the
texture brightness impact function over the middle
seven texel luminances is also consistent with a power
function coding scheme. However, (ii) the behavior of
the texture brightness impact function at the extreme
values tested deviates significantly from a power
function.

4.3. Implications to be drawn from the form of the
texture brightness impact function

What can we infer about subcortical intensity coding
from the current results? Perhaps not very much. Be-
cause all of our texel luminances (except possibly the
top two for some observers) exert different impacts on
texture luminance judgments, it follows that they must
all receive distinct subcortical codes; but this much was
obvious from the outset because all our texel lumi-
nances are easily discriminable. It is difficult, however,
to draw stronger conclusions with much confidence.
After all, as long as distinct texel luminances receive
distinct subcortical codes, it is logically possible for the
cortical system responsible for judging texture lumi-
nance to map those distinct subcortical codes onto the
distinct impacts that they exert on texture luminance
judgments. Only by making assumptions about the
computation used by the cortex to estimate texture
luminance can we draw any stronger inferences about
subcortical intensity coding. For example, only if we are
willing to assume that the cortical system used to make
texture luminance judgments maps subcortical codes
linearly onto the impacts they produce, can we infer
that the texture brightness impact function m exactly
reflects the form of the function f of Eq. (2). Granted,
it would be strange if the mapping from subcortical
intensity codes to impact exerted on texture brightness
were highly nonlinear.

However, the form of m itself suggests that this
mapping is not perfectly linear. We assume with high
confidence that our texel luminances produce strictly
increasing subcortical intensity codes. If the mapping
from subcortical intensity codes to texture brightness
impacts were linear, m should be strictly increasing. On
the contrary, though, for all observers in all experimen-
tal conditions, texels of maximal luminance exerted
either equal or lower impact on texture brightness than
did texels of the next lower luminance. This forces us to
conclude that the cortical module used to make texture
luminance judgments must be nonlinear in its mapping
of subcortical intensity codes onto texture brightness
impacts.

A possible explanation of the nonmonotonicity of the
texture brightness impact function runs as follows. Sup-
pose that texture luminance judgments are made by
summing the responses of neurons in some array. In
addition, imagine that the responses of retinal receptors
can (1) excite some neurons in this array, and (2) inhibit
others. (We leave open the mechanisms by which these
two modes of influence are exerted.) Under one sce-
nario, a direct chain of excitatory connections transmits
the receptor signal to an excitatory connection with one
or more neurons in the hypothesized array, thus en-
abling excitatory influence. Inhibitory influence, how-
ever, might be achieved indirectly via lateral inhibitory
connections between neurons within the array. Under
this scheme a bright texel could increase the firing rates
of those neurons it directly stimulates (via an excitatory
chain beginning with the retinal receptors); however, it
could also decrease the firing rates of other neurons via
lateral inhibitory connections from neurons it directly
stimulates.

Let mexcitatory (minhibitory) be the function that relates
texel luminance to the average, combined output of
those neurons receiving excitation (inhibition) from that
texel. We assume that mexcitatory (minhibitory) is monotoni-
cally increasing (decreasing). Let nmax and nmax but one be
the highest and second highest texel intensities. We can
explain the nonmonotonicity of the texture brightness
impact function by assuming that mexcitatory saturates
more rapidly than minhibitory. In this case, we can imag-
ine a scenario in which the net decrease of minhibitory

from nmax but one to nmax is greater than the net increase
of mexcitatory from nmax but one to nmax. Hence,

m(nmax)=mexcitatory(nmax)+minhibitory(nmax)

Bmexcitatory(nmax but one)+minhibitory(nmax but one)

=m(nmax but one). (16)

It is via the hypothesized functions mexcitatory and
minhibitory that our conjecture introduces nonlinearity
into the mapping from subcortical intensity codes to
texture brightness impacts. One naturally assumes that
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each of these functions is sigmoidal. Moreover, it seems
plausible to think that mexcitatory might be steeper than
minhibitory, in which case mexcitatory might well saturate
earlier than minhibitory.

However, having concluded that texture brightness
judgments are nonlinearly related to subcortical inten-
sity codes for our two maximal texel luminances, we
must acknowledge that the same may be true for other
of our texel luminances. Although our middle seven
(lower eight in some cases) luminances seem to be
veridically represented for purposes of assessing texture
luminance, this does not imply that the subcortical
codes for these lower eight luminances must,
themeselves, be linear. All that is logically entailed by
our results is that the subcortical codes for these eight
luminances must be distinct.

On the other hand, it should also be noted that if
subcortical intensity codes embody a significant com-
pressive nonlinearity, this compression induces little
distortion in texture luminance judgments. We conclude
that, in making judgments of texture luminance,
human vision effectively compensates for any such non-
linearities in precortical intensity coding. This suggests
more generally that precortical nonlinearities in the
coding of intensity may have little effect on cortical
processes.
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Appendix

Here we derive Eq. (12). It will be convenient to write
j6 for a random variable with cdf F6, as defined by Eq.
(5).

The theorem of total probabilities implies that for
any texel t of patch Pq the distribution function Fq

characterizing the random variable Xq(t) is defined as
follows: for any x�R,

Fq(x)=P[Xq(t)5x ]

= %
n�G

P[Xq(t)5x � Pq(t)=n ] P[Pq(t)=n ]

= %
n�G

Fn(x)q(n). (17)

from which it follows that for any function
f :R�R,

E [ f(Xq(t))]=
&�

−�

f(x)dFq(x)

=
&�

−�

f(x) %
n�G

q(n)dFn(x)

= %
n�G

q(n)E [ f(jn)]. (18)

Thus, in particular, we have

E [Xq(t)]=q · m. (19)

In addition,

nar [Xq(t)]=E [Xq
2(t)]−E2[Xq(t)]

= %
n�G

q(n) E [jn
2]− (q · m)2

= %
n�G

q(n) (s2(n)+m2(n))− (q · m)2

=q · (s2+m2)− (q · m)2. (20)

In the following lines,

%
t

indicates %
all texels t in dom(Pq)

. (21)

From Eqs. (7) and (19) it follows that

E [L(Pq)]=%
t

E [Xq(t)]W(t)= (m · q) %
t

W(t)=K1m · q

(22)

for K1 defined by Eq. (8). Also (because the random
variables Xq(t) are independent, for all texels t in
dom(Pq))

nar [L(Pq)]=%
t

W 2(t)nar [Xq(t)]

=K2(q · (s2+m2)− (q · m)2) (23)

for K2 defined by Eq. (9).
Under the proposed model, the observer judges Pq

more luminant than Pr iff

D(q, r)=L(Pq)−L(Pr)+Y\0. (4)

The central limit theorem implies that D(q, r) will be
approximately normally distributed, provided (a) the
additive pooling performed by each of L(Pq) and L(Pr)
is over a moderately large number of texels, and (b) the
variance of D(q, r) is not dominated by the contribu-
tions of only a few texels.

In addition, from Eqs. (4) and (22) it follows that

K1m · (q−r) (24)

On the other hand, under the natural assumption that
L(Pq) and L(Pr) are independent, Eqs. (4) and (23)
imply that
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nar [D(q, r)]=K2((q+r) · (s2+m2)− (q · m)2

−(r · m)2)+s2 (25)

Under the assumption that D(q, r) is normally dis-
tributed, we thus observe that

P[Observer judges Pq more luminant than Pr ]

=P[D(q, r)\0]

=F
� K1m · (q−r)

{K2((q+r) · (s2+m2)−(q · m)2−(r · m)2)+s2}1/2

�
(26)

where F denotes the standard normal cdf.
To follow the next strand of argument, one must

observe several simple facts concerning histogram mod-
ulators. Note first that for any texel distribution h, any
h-modulator u must sum to 0 because

%
n�G

u(n)= %
n�G

(h+u)(n)− %
n�G

h(n)=0. (27)

The uniform distribution U is an example of a constant
function of G. More generally, any k�R can be con-
strued as the function mapping each n�G onto k. For
any such constant function of G,

u · k= %
n�G

u(n)k=k %
n�G

u(n)=0 (28)

for any U-modulator u.
Suppose the texel distribution q in Eq. (26) is set to

U+u, and r is set to U−u for some reversible U-mod-
ulator u. Then Eq. (26) implies that the observer judges
PU+u more luminant than PU−u with probability p(u)
given by

p(u)=P[D(U+u, U−u)\0]

=F
� 2K1m · u

{2K2(s2 · U+m2 · U−(m · U)2−(m · u)2)+a2}1/2

�
.

(29)

Writing m̄ for m ·U (the mean value of m), note that

m2 · U− (m · U)2=m2 · U−m̄2

= (m2−2m̄m+m̄2) · U

= (m−m̄)2 · U (30)

enabling us to rewrite Eq. (29) as

p(u)

=F
� 2K1m · u

{2K2(s2 · U+ (m−m̄)2 · U− (m · u)2)+s2}1/2

�
.

(31)

Note also (with reference to Eq. (28)) that

m · u=m · u−m̄ · u= (m−m̄) · u (32)

Thus the value of Eq. (31) remains unchanged if we
substitute (m−m̄) · u for each occurrence of m · u to
derive

p(u)

=F
� 2K1(m−m̄) · u

{2K2(s2 ·U+(m−m̄)2 ·U−((m−m̄) ·u)2)+s2}1/2

�
.

(33)

Inspection of Eq. (33) shows that only the deviation of
m from its mean value (and not m̄ itself) influences
performance; accordingly, we assume with no loss of
generality that m̄=0, yielding the desired result:

p(u)=F
� m · u

{A+B(m2 · U− (m · u)2)}1/2

�
(12)

for

B=
K2

2K1
2 and A=B

�
s2 · U+

s2

2K2

� ������ (34)

References

Barlow, H. B. (1965). Optic nerve impulses and Weber’s law.
Cold Spring Harbor Symposium on Quantum Biology, 30, 539–
546.

Barlow, H. B., & Levick, W. R. (1969). Three factors limiting the
reliable detection of light by retinal ganglion cells of the cat.
Journal of Physiology, 200, 1–24.

Chubb, C. (1999). Texture-based methods for analyzing elementary
visual substances. Journal of Mathematical Psychology, 43, 539–
567.

Chubb, C., Econopouly, J., & Landy, M. S. (1994). Histogram
contrast analysis and the visual segregation of IID textures.
Journal of the Optical Society of America A, 11(9), 2350–
2374.

Falmagne, J-C. (1971). The generalized Fechner problem and
discrimination. Journal of Mathematical Psychology, 8, 22–
43.

Fechner, G.T. (1860). Elements of Psychophysics, In D.H. Howes and
E.C. Boring (eds.), H.E. Adler, trans., Holt, Reinhardt & Win-
ston, New York, 1966 (originally published, 1860).

Grossberg, S., & Todorovic, D. (1988). Neural dynamics of 1-D and
2-D brightness perception: a unified model of classical and recent
phenomena. Perception & Psychophysics, 43, 241–277.

He, S., & MacLeod, D. I. A. (1996). Local luminance nonlin-
earity and receptor aliasing in the detection of high frequency
gratings. Journal of the Optical Society of America A, 13, 1139–
1151.

He, S., & MacLeod, D. I. A. (1998). Contrast modulation flicker:
dynamics and spatial resolution of the light adaptation process.
Vision Res., 38(7), 985–1000.

Lennie, P. (1993). Roles of M and P pathways in contrast sensiti6ity.
In R. Shapley and D. M.-K. Lam (Eds.), MIT Press, Cambridge,
MA, pp. 201–213.

Luce, R. D., & Edwards, W. (1958). The derivation of subjective
scales from just noticeable differences. Psychological Re6iew, 65,
222–237.

MacLeod, D. I. A., & He, S. (1993). Visible flicker from invisible
patterns. Nature, 361, 256–258.

Makous, W. L. (1997). Fourier models and the loci of adaptation.
Journal of the Optical Society of America A, 14, 2323–2345..



J.-H. Nam, C. Chubb / Vision Research 40 (2000) 1695–1709 1709

Maxwell, J. C. (1860). On the theory of compound colors and the
relation of the colors of the spectrum. Philosophical Transactions
of the Royal Society, 150, 57–84.

Shapley, R., & Enroth-Cugell, C. (1984). Visual adaptation and retinal
gain controls. Prog. Retinal Res., 3, 263–346.

Stevens, J. C., & Stevens, S. S. (1963). Brightness function: effects of
adaptation. Journal of the Optical Society of America A, 53,
375–385.

Stevens, S. S. (1961). To honor Fechner and repeal his law. Science,
133, 80–86.

Stevens, S. S. (1962). The surprising simplicity of sensory metrics.
American Psychologist, 17, 29–39.

Stevens, S. S. (1967). Intensity functions in sensory systems. Interna-
tional Journal of Neurology, 6, 202–209.

Yang, J., & Makous, W. L. (1995). Modeling pedestal experiments with
amplitude instead of contrast. Vision Research, 35, 1979–1989.

.


