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A visual mechanism tuned to black
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Abstract

Chubb et al. [Journal of the Optical Society of America A 11 (1994) 2350] investigated preattentive discrimination of achromatic

textures comprising random mixtures of 17 Weber contrasts ranging linearly from �1 to 1. They showed that only a single mech-

anism B is used to discriminate between textures whose histograms are equated in mean and in variance. Although they provided a

partial characterization of B, their methods did not allow them to measure the sensitivity of B to texture mean and variance. Here,

additional measurements are performed to complete the functional characterization of B. The results reveal that B (i) is strongly

activated by texture elements of the lowest contrast (near �1), (ii) is slightly activated by texture elements of contrast �0.875,

and (iii) barely distinguishes the 15 contrasts ranging from �0.75 all the way up to 1. To reflect the sharpness of its tuning to very

dark, sparse elements in a predominantly bright scene, we call B the blackshot mechanism.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The pioneering research of Julesz (1962, 1975, 1981),

Julesz and Bergen (1983), Julesz, Gilbert, Shepp, and

Frisch (1973), Julesz, Gilbert, and Victor (1978), Beck

(1966, 1982) and Beck, Prazdny, and Rosenfeld (1983)

revealed that human vision incorporates systems that
operate preattentively to segment the visual field based

not only on color and brightness differences, but also

based on texture differences. These demonstrations gave

rise to various closely related models of texture segrega-

tion (e.g., Bergen & Adelson, 1988; Bergen & Landy,

1991; Bovik, Clark, & Geisler, 1990; Caelli, 1985; Fogel

& Sagi, 1989; Graham, 1991; Grossberg & Mingolla,

1985; Knutsson & Granlund, 1983; Landy & Bergen,
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1991; Malik & Perona, 1990). All of these ‘‘back

pocket’’ models (Chubb & Landy, 1991) proposed that

preattentive texture segregation occurs in two main

stages, a measurement stage followed by a surveying

stage.

In the measurement stage the visual system applies to

its input a battery of spatially local image transforma-
tions that we shall call mechanisms. In the surveying

stage, boundaries are constructed between visual field

regions that differ significantly in the activations they

produce in one or more mechanisms.

We focus here on achromatic textures of the sort

shown in Fig. 1. Each of these textures is a randomly

scrambled array of squares conforming to a specified

luminance histogram. In Section 3 we describe evidence
suggesting that (1) the number of mechanisms used to

discriminate such textures is three, (2) two of these are

sensitive primarily to the first and second moments of

the texture histogram, and (3) the third mechanism, B,

is sensitive to many higher-order moments. Chubb,
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Fig. 1. Examples of texture stimuli. Each texture is a scramble SU+m.

That is, it has a gray level histogram U + m, shown as an inset in each

panel, where U is the uniform distribution, and m is a histogram

modulator. Textures for eight different modulators are shown: (a)

m = k1, (b) m = �k1, (c) m = k2, (d) m = �k2, (e) m = k3, (f) m = �k3,
(g) m = k4, (h) m = �k4. Note that the textures in e–h are readily

discriminable, yet they all have histograms with the same mean and

variance as U.
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Econopouly, and Landy (1994) partially characterized

B�s sensitivity to different texture element (texel) con-

trasts. Here, we finish the job.
1 Chubb et al. (1994) used independent, identically distributed (IID)

textures, whose texel values are jointly independent random contrasts

identically distributed as p. Unlike a scramble, an IID texture patch

will have different contrasts in proportions that deviate randomly from

p. We use scrambles to eliminate uncontrolled histogram variability,

although with the use of textures such as ours with a reasonably large

number of samples, the difference in the accuracy of the measurements

is likely to be quite small.
2. Preliminaries

2.1. Texture patches

Our stimuli are arrays of small square texels painted

with values from C, the set of 17 Weber contrasts

�1,�7/8, . . ., 7/8, 1. The term ‘‘histogram’’ usually refers

to a function that gives the number of pixels in an image

that take any given value. We deviate from this usage in

calling any probability distribution on C a histogram. U

denotes the uniform histogram: i.e., U(c) = 1/17 for all
c 2 C.

To generate a texture patch comprising N texels, we

first select a histogram p. Then we load a virtual urn

with N contrasts from C in proportions conforming as

closely as possible to p and draw N times from the urn

without replacement to assign contrasts to texels. The

resulting patch Sp is called the scramble with histogram
p. Thus, SU is the scramble with equal proportions of all

17 contrasts. 1
2.2. Modulators and modulation spaces

A function m : C ! R is called a modulator if each of
U + m and U�m is a probability distribution (i.e., is

non-negative for all c 2 C and sums to 1). In addition

m is called maximal if max(jmj) = 1/17.

In our experiments, subjects discriminate between

scrambles SU+m and SU�m for various modulators m.

Often, as a shorthand for saying that an observer cor-

rectly discriminates SU+m from SU�m with probability

q we will instead say that ‘‘The observer discriminates
m with success rate q’’ or, if q is large, ‘‘m is easily

discriminable.’’

The set of functions spanned by N linearly independ-

ent modulators is called a modulation space of dimension

N. (Note that any modulation space contains many

functions g for which max(g) > 1/17 and thus are not

modulators.) X denotes the 16-dimensional space con-

taining all modulators.
2.3. Projection

Let /1, . . .,/N be an orthogonal basis of U, a sub-

space of X. For any function f : C ! R, the projection

of f into U is

ProjUðf Þ ¼
XN
i¼1

W i/i; ð1Þ

where

W i ¼
/i � f
/i � /i

; i ¼ 1; . . . ;N : ð2Þ
2.4. Some distinguished modulators

The maximal modulators k1, . . .,k7 (Fig. 2) play a cen-
tral role here. These modulators (discrete domain ana-

logues of the Legendre polynomials) are orthogonal.
Moreover, ki is an ith-order polynomial, for i = 1, . . .,
7; thus, k1, . . .,ki span the space of all ith-order polyno-

mial modulators. Fig. 1 shows the scrambles SU+m and

SU�m for m = k1, . . .,k4.
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Fig. 2. The maximal modulators k1, . . .,k7.
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2.5. Modeling discrimination processes

We adapt a standard model (Graham, 1989) to de-

scribe scramble discrimination. Specifically, we assume
human vision comprises some number, NM, of mecha-

nisms, M1,M2, . . .,MNM
, that are differentially sensitive

to different scrambles. We write Mi(Sp) for the expecta-

tion of the space-average activation produced in Mi

by Sp. We assume that the channel applies a static

non-linearity fi to each texel�s contrast, and thus

MiðSpÞ ¼
X
c2C

fiðcÞpðcÞ ¼ fi � p: ð3Þ

We call fi the impact function of Mi; fi(c) gives the mean
impact exerted by a texel of contrast c inMi (see Chubb,

1999; Chubb et al., 1994).

For one of our stimuli, the task requires the subject to

discriminate textures SU+m and SU�m. We assume the

probability of success in such a discrimination is a func-

tion of the differential activation produced in each mech-

anism. For a given mechanism Mi, the differential

activation is

DiðmÞ ¼ MiðU þ mÞ �MiðU � mÞ ¼ 2f i � m: ð4Þ
We assume that the success rate is a monotonic func-

tion of the Minkowski length of the vector (D1(m),

D2(m), . . .,DNM
(m)). That is, for some strictly increasing

psychometric function W and some exponent h,

Pr½discriminating SUþm from SU�m� ¼ WðSalðmÞÞ; ð5Þ
where

SalðmÞ ¼
XNM

i¼1

j DiðmÞjh
 !1=h

¼ 2
XNM

i¼1

j fi � mjh
 !1=h

ð6Þ
is called the salience of the texture difference pro-

duced by m. h is analogous to the slope of the psycho-

metric function and typically has values between 3 and

6 (e.g., Watson, 1979). We only assume that h P 1.

2.6. The indeterminacy argument

Note that if h = 2, then salience is Euclidean. In this

case, for F the 17 · NM matrix whose ith column vector

is fi, Eq. (6) becomes

SalðmÞ ¼ 2ðmTFF TmÞ1=2 ð7Þ
(treating m as a column vector). Thus, equisalience con-

tours form parallel ellipses centered at 0. In practice it is

difficult to reject the hypothesis that a given set of dis-

crimination data conforms to such a pattern (Poirson

& Wandell, 1990). Moreover, if salience is given by
Eq. (7), then for any NM · NM isometry R (i.e., rotation

and/or reflection), it is also true that

SalðmÞ ¼ 2ðmTFRRTF TmÞ1=2: ð8Þ
That is, the matrix FR of candidate impact functions

yields exactly the same value of salience as F for any

modulator. This suggests that the impact functions

f1, f2, . . ., fN can be determined only up to an arbitrary

isometry and hence that individual mechanisms cannot

be characterized. However, as we show in Sections 2.7

and 2.8, certain antecedent conditions (which hold in
the current case) can be exploited to determine the im-

pact function of an individual mechanism.

2.7. Univariate modulation spaces

A modulation space U is called perceptually univari-

ate if there exists fU 2 U such that

SalðmÞ ¼ 2 j fU � m j ð9Þ
for any m 2 U (note that this factor of 2 is the same one

as in Eqs. (4) and (7)). In this case fU is called the dis-

criminator of U. Note that for any two modulators m1

and m2 in univariate modulation space U,

Salðm1 þ m2Þ ¼ 2 j fU � m1 þ fU � m2 j

¼
Salðm1Þ þ Salðm2Þ if signðfU � m1Þ ¼ signðfU � m2Þ;
j Salðm1Þ � Salðm2Þ j if signðfU � m1Þ 6¼ signðfU � m2Þ:

�
ð10Þ

Several tests of univariance follow from Eq. (10). Sup-

pose, for example, that modulators m1 and m2 support

equal discrimination success rates. In this case,

Sal(m1) = Sal(m2), from which Eq. (10) implies that either

Salðm1 þm2Þ ¼ 0 and Salðm1 �m2Þ ¼ 2Salðm1Þ ð11Þ

or else

Salðm1 �m2Þ ¼ 0 and Salðm1 þm2Þ ¼ 2Salðm1Þ: ð12Þ
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Thus, if m1 and m2 yield equal discrimination perform-

ance, then one of m1 + m2 or m1 � m2 must yield chance

performance. If m1 and m2 are orthogonal, and each

alone yields easy discrimination, this cancellation test

provides a powerful test of univariance.

The titration method gives a second test and also ena-
bles one to determine the discriminator fU if U is univa-

riate. Let /1,/2, . . .,/n be an orthogonal basis of U, and

suppose /1 has been scaled to yield threshold discrimi-

nation performance. Without loss of generality, we set

fU Æ /1 = 1. For any other /k (k = 2,3, . . .,n), the locus

of points (x,y) for which x/k + y/1 supports threshold

performance is called the titration line of /k with /1.

Eq. (10) implies that this line must be straight with x-
intercept x0 satisfying fU � /k ¼ x�1

0 . Chubb et al.

(1994) describe methods for efficiently estimating the

titration line. If all titration lines are convincingly

straight, univariance is supported, in which case Eqs.

(1) and (2) can be used to estimate fU (note that

ProjU(fU) = fU).

2.8. Isolating a single mechanism

As proven in Appendix A, if U is perceptually uni-

variate with discriminator fU, then for each of

i = 1,2, . . .,NM, ProjU(fi) must be equal to kifU for some

scalar ki. Suppose, then, that a modulation space U of

moderately high dimension N (e.g., N P 3) is found to

be perceptually univariate. In this case, we naturally in-

fer that only a single mechanism senses any differences
between the scrambles generated by m 2 U. Although

this conclusion is not logically necessary, the only other

possibility is that multiple mechanisms each project to

exactly the same line through the origin in U, which

seems implausible.
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Fig. 3. The discriminator f3,. . .,7. This function was found by Chubb

et al. (1994) to govern discrimination within the modulator space

K3,. . .,7. Specifically, for all modulators m 2 K3,. . .,7, the probability of

discriminating m was found to be a function of jf3,. . .,7 Æ mj.
3. Empirical background

k1 is easily discriminable (compare Fig. 1a and b), as

is k2 (Fig. 1c and d). For k1, discrimination is driven by a

difference in texture brightness, which seems to be con-

trolled by histogram mean, whereas for k2, discrimina-

tion seems driven not by brightness but by the

difference in some statistic like histogram variance. Intu-

ition thus suggests that the mechanism used to discrim-
inate k1 is different from that used to discriminate k2.
This intuition is supported by the cancellation test which

strongly rejects the hypothesis that the space spanned by

k1 and k2 is perceptually univariate. It follows that at

least two mechanisms are used to discriminate modula-

tors varying in k1 and k2. Call these mechanismsM1 and

M2 and their impact functions f1 and f2.

Chubb et al. (1994) hypothesized that only one mech-
anism is differentially sensitive across the 14-dimen-

sional space K3,. . .,16 orthogonal to both k1 and k2.
(For any m 2 K3,. . .,16, U + m has the same mean and

variance as U.) They used the titration method to test

the perceptual univariance of the five-dimensional space

K3,. . .,7 spanned by kk, k = 3,4, . . ., 7 (as a surrogate for

K3,. . .,16). With very small measurement error, the per-

ceptual univariance of K3,. . .,7 was confirmed for one ob-
server and barely rejected for another. Fig. 3 plots the

(nearly identical) estimates of the discriminator f3,. . .,7
for both observers, scaled to be maximal modulators.

Using the logic of Section 2.8, they concluded that dis-

crimination in K3,. . .,7 (and thus almost certainly in

K3,. . .,16) is accomplished by a single mechanism B with

impact function fB whose projection into K3,. . .,7 is a

scaled version of f3,. . .,7.
3.1. Other mechanisms are slightly sensitive to differences

in K3,. . .,7

Contrary to this conclusion, however, mechanisms

other than B seem to have slight differential sensitivity

to some m 2 K3,. . .,7. In particular, modest failures of

the cancellation test are obtained for k3 and k4. Why
did the results of Chubb et al. (1994) fail to implicate

more than one mechanism? First (this may be the whole

story), the cancellation test provides a more stringent

test of perceptual univariance than the titration

method. A second possibility is the following. It seems

likely that texture discrimination processes are more

plastic than Eq. (6) suggests. Suppose observers

can attentionally weight the differential activations
Dk(m), k = 1,2, . . ., NM, to optimize performance in dis-

criminating m. If so, then because B is the single mech-
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anism whose response varies most dramatically across

K3,. . .,7, participants in the experiments of Chubb et al.

(1994) may have chosen to ‘‘tune in’’ to DB(m) and

ignore the typically much smaller differential activations

of other mechanisms. It should be noted, however, that

the logic underlying the current experiments holds
regardless of whether or not observers used such a

strategy.
3.2. Implications

These findings imply that there are at most three

scramble-sensitive mechanisms. If B is distinct from

M1 and M2, then there are exactly three. However, the
results of Chubb et al. (1994) do not rule out the possi-

bility that B is one and the same as one of M1 or M2.

This issue was resolved by Chubb, Landy, Nam, Bind-

man, and Sperling (2004) who showed that for any three

distinct i, j,k 2 {1,2,3,4}, discrimination is above

chance for any maximal modulator m in the space Ki,j,k

spanned by ki, kj, and kk. If M1 and M2 were the only

mechanisms, then there would have to exist an m in
the three-dimensional space Ki,j,k orthogonal to both f1
and f2, implying that Sal(m) = 0 and hence that m should

yield chance performance. The failure to find such an m

in any of the four subspaces Ki,j,k thus argues that M1,

M2 and B are distinct. Chubb et al. (2004) also show

that the space K1,2,3,4 spanned by k1, k2, k3 and k4 does
indeed contain a maximal modulator m yielding chance

performance, bolstering the conclusion that human vi-
sion has only the three scramble-discriminating mecha-

nisms, M1, M2 and B. Note finally that each of f1 and

f2 can be well-approximated by a quadratic function.

Otherwise K3,. . .,7 should deviate more strongly from

perceptual univariance.

3.3. Toward a more complete characterization of B

Assuming k8,k9, . . .,k16 contribute little to fB, then for

unknown weights W1, W2, and W3,. . .,7

fB ¼ W 1k1 þ W 2k2 þ W 3;...;7f3;...;7

þ
minor contributions

from higher order terms

� �
: ð13Þ

Our goal is to crystallize our picture of fB by measuring
W1 and W2. Note again that we can only determine fB
up to an unknown multiplicative constant.

4. Methods

4.1. Logic of the methods

Suppose we are assured that a particular modulator

m, yielding threshold success rate q, ‘‘isolates B’’ in the

sense that D1(m) = D2(m) = 0, implying that m-discrimi-
nation is accomplished by B alone. In this case, for

low amplitude modulators d, even though f1 Æ d and

f2 Æ d may be non-zero, we expect that B will continue

to predominate in discriminating m + d. Thus, we might

hope to infer B�s sensitivity to kk (for either k = 1 or

k = 2) by adding a small amount of kk to m and observ-
ing its effect on discrimination.

Toward this end, we must first choose a modulator

m likely to do a good job of isolating B. Certainly m

should be drawn from K3,. . .,7. Indeed if K3,. . .,7 were

perfectly univariate, we might choose m indiscrimi-

nately from K3,. . .,7. However, this is not the case (see

Section 3.1). We opt for m = f3,. . .,7 in hopes of minimiz-

ing the ratios j fk Æ mj/jf3,. . .,7 Æ mj (k = 1,2). Across all m
of some fixed norm this choice maximizes the denomina-

tor; without knowing more about f1 and f2 this is the

best we can do. We assume that f3,. . .,7 Æ fk 
 0 for

k = 1,2.

The first step in measuring fB Æ k1 and fB Æ k2 is to ob-

serve the success rate at discriminating Af3,. . .,7 for vari-

ous histogram amplitudes A. We use a 4-AFC task

(chance = 0.25). These data are used to estimate the psy-
chometric function W of Eq. (5) which we model as a

Weibull function. It is convenient to choose the arbi-

trary scale factor for salience by setting jfB Æ f3,. . .,7j = 1.

Under this convention

SalðAf 3;...;7Þ ¼ 2 j Af B � f3;...;7 j¼ 2A: ð14Þ

For any p 2 [0.25,1], we write Ap for the amplitude such

that Ap f3,. . .,7 yields discrimination success rate p, imply-

ing that 2Ap = Sal(Apf3,. . .,7) = W�1(p).

Next, for threshold probability q (we use q = 0.6) we

fix a base modulator b = Aqf3,. . .,7 and proceed to meas-

ure the effect on performance of perturbing b in four

ways. For small modulation amplitudes e1 and e2, we
measure performance at discriminating

b�1 ¼ b� e1k1;

bþ1 ¼ bþ e1k1;

b�2 ¼ b� e2k2; and

bþ2 ¼ bþ e2k2:

ð15Þ

Let q�
1 , qþ

1 , q�
2 and qþ

2 be the obtained success rates.

The differential activations produced in B by b�k , b
and bþk are

DBðb�k Þ ¼ 2f B � b�k ¼ 2ðAq � ekfB � kkÞ;
DBðbÞ ¼ 2f B � b ¼ 2Aq; and

DBðbþk Þ ¼ 2f B � bþk ¼ 2ðAq þ ekfB � kkÞ:
ð16Þ

We choose ek small enough to be sure that j ekfB Æ kkj <
Aq, implying that all three of DBðb�k Þ, DB(b), and DBðbþk Þ
in Eq. (16) are positive.

Moreover, for j,k = 1,2, the differential activations
produced in Mj by b�k , b and bþk are
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Djðb�k Þ ¼ 2f j � b�k ¼ �2ekfj � kk;

DjðbÞ ¼ 2f j � b ¼ 0; and

Djðbþk Þ ¼ 2f j � bþk ¼ 2ekfj � kk:

ð17Þ

Note (with reference to Eqs. (5) and (6)) that

2Aq�k
¼ W�1ðq�

k Þ ¼ Salðb�k Þ; similarly, 2Aq = Sal(b), and

2Aqþk
¼ Salðbþk Þ. Thus substituting the results of

Eqs. (16) and (17) into Eq. (6) we find

Aq�
k
¼ ðj Aq � ekfB � kkjhþ j ekf1 � kkjhþ j ekf2 � kkjhÞ1=h;

ð18Þ
and

Aqþk
¼ ðj Aq þ ekfB � kkjhþ j ekf1 � kkjhþ j ekf2 � kkjhÞ1=h:

ð19Þ
Observe that if h were equal to 1, then Aqþk

� Aq�k
would

be exactly equal to 2ek fB Æ kk. This would also be true if
h were equal to 1, assuming we have chosen e1 and e2
small enough that jDB(m)j > jD1(m)j and jDB(m)j >
jD2(m)j for all of m ¼ b�1 , b

þ
1 , b

�
2 and bþ2 . Thus, if the true

value of h were either 1 or 1, then

fB � kk ¼
Aqþk

� Aq�k

2ek
: ð20Þ

This equality breaks down, however, for values of h be-

tween these extremes. Simulations reveal that the esti-

mate of fB Æ kk provided by Eq. (20) is poorest if the
true value of h is 2, in which case the true value of fB Æ kk
is given by

fB � kk ¼
A2

qþk
� A2

q�k

4ekAq
: ð21Þ

Thus, Eqs. (20) and (21) provide bounds on fB Æ kk whose
difference reflects possible error due to uncertainty

about h. As we shall see, Eqs. (20) and (21) yield very

similar estimates of fB.
4.2. Selection of e1 and e2

Pilot experiments were used to select appropriate val-
ues for e1 and e2. Observers are quite sensitive to pure k1
modulations, and it is evident that most of this sensitiv-

ity is due to mechanisms other than B. To prevent b�1
and bþ1 from producing too much differential activation

in these other mechanisms, we must choose e1 to be

small. On the other hand, e1 needs to be large enough

to enable us to detect a B-driven performance difference

for b�1 versus bþ1 if such a difference exists. In a pilot
experiment, we varied e1 to find a value that was large

enough so that performance of b�1 and bþ1 differed, but

the mean performance was close to that of b, and

e1 = 0.06 achieved the desired compromise. Observers

are less sensitive to k2 than to k1, which enabled us to

use a larger value of e2 = 0.15.
4.3. Observers

The observers were the three authors. All have nor-

mal or corrected-to-normal vision.

4.4. Linearization

The 17 luminances were roughly n · 6cd/m2, for

n = 0, . . ., 16. More precisely, the lowest luminance was

0.5cd/m2; the highest was 95.5cd/m2. Linearization was

achieved by eye as follows. The screen displayed a square

wave with bars alternating between two fine-grained pat-

terns. One pattern was a checkerboard of lumlow and

lumhigh. The other pattern contained three intensities,
lumlow, lumhigh and lummid (half the area had lumi-

nance lummid, 1/4 had lumlow and 1/4 had lumhigh). (We

used a three-luminance pattern rather than a uniform

field of luminance lummid to control for possible spatial

non-linearities in the display (Klein, Hu, & Carney,

1996; Mulligan & Stone, 1989).) The screen was viewed

from a far enough distance that the fine pattern granular-

ity was invisible. At this distance, the square wave�s spa-
tial frequency was roughly 6c/deg. Since the pattern

grain could not be resolved, the square wave was visible

only if alternating bars differed in mean luminance. An

observer adjusted lummid to make the square wave van-

ish, thus setting it to the average of lumlow and lumhigh.

We generated a lookup table by repeating this procedure

with different values of lumlow and lumhigh to determine

the value of lummid lying midway between lumlow and
lumhigh. A smooth function was fit to the resulting data,

and 17 equally spaced values were used.

4.5. Stimuli and task

A stimulus comprised a square of 68 · 68 texels. At

the viewing distance of 69cm, the display subtended

12.7�. A bar of one texture SU+m was placed on a back-
ground of SU�m, or vice versa, in one of four possible

positions (Fig. 4). The stimulus was displayed for

200ms following a fixation display. Stimuli were viewed

binocularly. The observer used the arrow keys to indicate

target bar location and then received audible feedback.

4.6. Conditions

The experiment had two phases. In phase 1, perform-

ance at discriminating Af3,. . .,7 was measured for

A = 0.125,0.25, . . ., 1. Data were collected in five blocks,

each comprising 160 randomly sequenced trials, 20 for

each value of A. In 10 trials the target bar was filled with

SU+Af3,. . .,7 and the background with SU�Af3,. . .,7; in the

other 10 it was the other way around. The data from

the two trial types were pooled, yielding 100 trials per
condition. A Weibull function, scaled for chance per-

formance of 0.25 was fit (using a maximum likelihood



Fig. 4. The four-alternative forced-choice task. On a given trial, for

some modulator m, one of these four stimulus configurations was pre-

sented with a bar of texture SU+m on a background of SU�m or

vice versa.

Table 1

Parameters of the fit psychometric function

a b A0.6

JE 0.8222 2.7609 0.7936

CC 0.5343 2.1593 0.5107

MSL 0.7697 2.2194 0.7365

a is the threshold amplitude. b is the slope. A0.6 = W�1(0.6) is the

estimate of the amplitude resulting in a proportion correct of 0.6.
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procedure) to the resulting data as follows. Following

Eq. (5), and continuing to express salience in multiples

of jfB Æ f3,. . .,7j, we derive

WðSalðAf 3;...;7ÞÞ ¼ Wð2A j fB � f3;...;7 jÞ ¼ Wð2AÞ

¼ ð1=4Þ þ ð3=4Þð1� 2�ð2A=aÞbÞ: ð22Þ

Letting a absorb the factor of 2 on the right side of

Eq. (22) yields

Wð2AÞ ¼ ð1=4Þ þ ð3=4Þð1� 2�ðA=aÞbÞ: ð23Þ
This was used to estimate A0.6 = W�1(0.6)/2.

In phase 2, for b = A0.6f3,. . .,7, e1 = 0.06, e2 = 0.15, per-

formance was assessed at discriminating each of b�1 , b
þ
1 ,

b�2 , b
þ
2 (Eq. (15)), and also b (to refine the estimate of

W(b) = 0.6 derived in phase 1). Each observer ran 16

blocks. Each block had 20 trials in each of these five

conditions (with 10 trials of each of the two back-

ground/target-bar configurations in each condition),
yielding a total of 320 trials per condition.
q
1

q q
1

plotted against the values �e1, 0, e1. That is, for each value of k1
amplitude, we plot the amount of f3,. . .,7 alone that would have resulted

in equivalent performance. If the Minkowski exponent is 1 or 1, the

slope of the best-fitting straight line through these three points

provides an estimate of 2fB Æ k1. Right-hand column: analogous results

for k2.
5. Results

The estimates, derived from phase 1, of psychometric

function parameters a (mean) and b (slope) (Eq. (23)) as
well as of A0.6 = W�1(0.6) are given in Table 1 for each

observer. The results of phase 2 are shown in Fig. 5. Re-

sults for k1 are shown in the left column. Aq�
1
, Aq and Aqþ

1

are plotted against the values �e1, 0, and e1 (for

e1 = 0.06). The corresponding results for k2 (for

e2 = 0.15) are shown in the right column.
If performance in these conditions were determined

by B alone, then the three points in each plot would

lie on a straight line. The tendency of these curves

toward upward concavity reflects the influence of mech-

anisms M1 and M2, which increase the discriminability

of b�1 , b
þ
1 , b

�
2 and bþ2 in comparison to b, to which M1

and M2 are blind.



Table 2

Estimates of the first- and second-order components of the impact

function fB along with 95% confidence intervals for each

JE CC MSL

fBÆk1 (Eq. (20)) 1.1192 1.0628 0.5041

95% c.i. ±0.7260 ±0.6078 ±0.8601

fBÆk1 (Eq. (21)) 1.2897 1.1392 0.5365

95% c.i. ±0.8859 ±0.6664 ±0.8714

fBÆk2 (Eq. (20)) �1.3133 �1.1060 �1.2374

95% c.i. ±0.3015 ±0.2560 ±0.3974

fBÆk2 (Eq. (21)) �1.5233 �1.2126 �1.4089

95% c.i. ±0.4068 ±0.3278 ±0.4200

Estimates derived from Eq. (20) are appropriate if Minkowski expo-

nent h is either 1 or 1. Deviations from this estimate are maximal if

h = 2; in this case, the correct estimator of fB Æ kk (k = 1,2) is given by

Eq. (21). The confidence intervals were computed using a bootstrap

(Efron and Tibshirani, 1993) calculated by resampling the raw data.
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Eqs. (20) and (21) were used to obtain bounds on

fB Æ kk, k = 1,2. The resulting estimates are presented in

Table 2. For JE and CC, (nearly identical) estimates of

f3,. . .,7 were derived by Chubb et al. (1994) (compare

the o�s and +�s in Fig. 3). Thus, our new estimates of
CC

JE

Im
pa

ct

1 0 1

MSL

Contrast

Fig. 6. The estimated blackshot impact function fB for three subjects.

For each subject, two functions are shown corresponding to h values of

1 or 1 (solid line) or 2 (dashed line).
k1 Æ fB and k2 Æ fB enable a full seventh-order polynomial

approximation of fB for each of these two observers. For

observer MSL, we estimate fB using the current results

plus the solid curve in Fig. 3 (the average of the f3,. . .,7
estimates for JE and CC).

Our estimates of fB Æ k1 and fB Æ k2 were obtained
under the arbitrary but convenient assumption that

fB Æ f3,. . .,7 = 1. Thus, Eqs. (1) and (2) yield

fB 
 f3;...;7
f3;...;7 � f3;...;7

þ fB � k1

k1 � k1

k1 þ
fB � k2

k2 � k2

k2: ð24Þ

Fig. 6 shows the resulting estimates of fB. The solid lines

use the values of fB Æ kk from Eq. (20), and the dashed

lines use the values from Eq. (21). The similarity of these

two curves shows that the possible variation in our esti-

mate of fB due to uncertainty about the Minkowski

pooling exponent h (Eq. (6)) is negligible.
6. Discussion

As Fig. 6 makes clear, fB is essentially flat across the

entire range of texel contrasts from �0.75 to 1.0. This

means that for any scramble Sp, B(SP) should be

approximately proportional to p(�1), the fraction of

Sp�s texels whose contrast is �1 (or very near it). We call

the visual statistic sensed by B blackshot to emphasize
B�s exquisite sensitivity to the relatively sparse spattering

of very dark elements (like buckshot) across a predom-

inantly bright and variegated field.

We have suggested that blackshot constitutes a

brightness-coding mechanism distinct from those used

to discriminate overall texture brightness and contrast.

Observers are nearly veridical in judging mean texture

brightness (Nam & Chubb, 2000), suggesting the exist-
ence of a nearly linear impact function f1. On the other

hand, observer judgments of texture contrast are prima-

rily influenced by the distribution of texel contrasts

below the mean (Chubb & Nam, 2000), consistent with

the existence of a second impact function, f2, that is si-

milar to half-wave rectification, but does not emphasize

the darkest texels nearly so much as fB.

Whittle (1986) provides a precedent for the current
result (see also Kingdom & Moulden, 1991). In that

study, observers attempted to judge which of two

small, uniform target squares was higher in luminance.

The targets could be either brighter or darker than the

background. For targets near the background in lumi-

nance, discrimination sensitivity followed a ‘‘dipper

function’’: the threshold difference in luminance be-

tween the two squares at first decreased with deviation
of target luminances from background, then began

steadily to increase, following Weber�s law. For targets
greater than the background in luminance, this pattern

persisted over the full range of target luminances

tested. However, the results were different for targets
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of luminance lower than the background. Regardless of

background luminance, as spot luminances were de-

creased to values near 0, observers became very sensi-

tive to small differences in luminance between the two

spots.

Thus, like the current study, Whittle�s (1986) results
implicate a system that enables fine discrimination be-

tween targets with contrasts near �1, even though the

targets are set against a much brighter background.

The current study makes it clear that this system oper-

ates preattentively, in spatially parallel fashion to sense

blackshot: the varying concentrations of the darkest

patches throughout the visual field, regardless of the

overall luminance of the background.
Our result may also relate to the way the darkest pix-

els are grouped in random textures. Frisch and Julesz

(1966) found that random black-and-white textures

underwent the most frequent figure-ground reversals

when 40% of the texels were black. This might suggest

that black texels are more capable of grouping, and

hence of being treated as foreground, as compared to

white texels.
It was mentioned earlier that Chubb et al. (2004)

demonstrated the existence of texture scramble meta-

mers, consistent with the notion that the perceptual

space for these scramble textures is three-dimensional.

In a convincing demonstration of this phenomenon,

they were able to construct a texture consisting of only

three discrete gray levels that was metameric to SU (the

texture where all 17 gray levels occur in equal num-
bers). Indeed, observers who are not informed of the

difference between the two textures in this display fail

to notice any inhomogeneity even after prolonged, free

viewing. However, there are limits to this behavior. For

example, for histograms p and q defined by setting

p(�3/8) = p(3/8) = 0.5, and q(0) = 0.75 and q(�3/

4) = q(3/4) = 0.125, scrambles Sp and Sq are easily dis-

criminable despite the fact that they have equal
mean (0) and variance (9/64), and equal blackshot

(since neither scramble contains any contrasts close en-

ough to �1 to excite the blackshot mechanism). More-

over, it proves impossible to adjust the probabilities of

contrasts �3/4, 0 and 3/4 to achieve a scramble meta-

meric to Sp. This argues that if histogram entropy

is made very low, then mechanisms other than M1,

M2 and B come into play enabling scramble discrimi-
nation, even in a brief flash with a post-stimulus

masker.

One might well wonder about the adaptive function

of the blackshot mechanism. We speculate that the pri-

mary function of this system has nothing to do with tex-

ture discrimination per se. Rather we suggest that the

purpose of the blackshot system is to enable vision to

be useful in shaded areas in an otherwise brightly illumi-
nated field of view. If one had to rely on a system whose

activation were linear over the range of luminances in
the entire scene, then most shaded areas would appear

uniformly black. To draw any visual distinctions within

a darkly shaded region of an otherwise bright scene re-

quires a special-purpose system like the blackshot sys-

tem, sharply tuned to fine differences between

intensities that are very low in comparison to the ambi-
ent light level.
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Appendix A. Our claim in Section 2.8 to have isolated

and functionally characterized a single visual mecha-

nism B is based on the following theorem.
Theorem. Let X be a Minkowskian modulation space of

perceptual dimension N with impact functions fi,

i = 1, . . .,N and exponent h. Then for any subspace

U � X the following conditions are equivalent:

(i) U is perceptually univariate with discriminator f.
(ii) There exist weights kj, j = 1, . . .,N such that:

XN
h
ðaÞ

j¼1

j kjj ¼ 1;

ðbÞ for all / 2 U; j fj � / j¼j kjf � / j ðj ¼ 1; . . . ;NÞ:
ðA:1Þ

Proof that (ii) implies (i). If (ii) holds, then immedi-

ately, for any / 2 U,

Salð/Þ ¼ 2
XN
j¼1

j fj � /jh
 !1=h

¼ 2
XN
j¼1

j kjf � /jh
 !1=h

¼ 2 j f � / j
XN
j¼1

j kjjh
 !1=h

¼ 2 j f � / j; ðA:2Þ

implying (i).

Proof that (i) implies (ii). Suppose (i) holds. We first

show that in this case, for j = 1, . . .,N, ProjU(fj) = kjf for
some kj 2 R. Suppose the contrary. That is, suppose

that for some j, ProjU(fj) is not a scalar multiple of f.

Then for some non-zero function gj orthogonal to f, and

some kj 2 R,

ProjUðfjÞ ¼ kjf þ gj: ðA:3Þ
Because f 2 U and ProjU(fj) 2 U, we note that gj = Pro-

jU(fj) � kjf is also an element of U, implying that

SalXðgjÞ ¼ 2 j f � gj j¼ 0: ðA:4Þ



3232 C. Chubb et al. / Vision Research 44 (2004) 3223–3232
However, it is also true that gj 2 X, implying that

SalXðgjÞ ¼ 2
XN
j¼1

j fj � gjj
h

 !1=h

P2 j fj � gj j> 0; ðA:5Þ

contradicting Eq. (A.4). This proves that if (i) holds,

then ProjU(fj) � kjf for j = 1, . . .,N. Note that further-

more in this case, for any / 2 U,

j f � / j ¼ SalXð/Þ
2

¼
XN
j¼1

j fj � /jh
 !1=h

¼
XN
j¼1

j kjf � /jh
 !1=h

¼j f � / j
XN
j¼1

j kjjh
 !1=h

;

ðA:6Þ

implying that
PN

j¼1 j kjj
h ¼ 1. This completes the proof

that (i) implies (ii).
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