
2350 J. Opt. Soc. Am. A/Vol. 11, No. 9/September 1994

Histogram contrast analysis and the visual segregation
of I1D textures

Charles Chubb

Department of Psychology, Rutgers University, New Brunswick, New Jersey 08903

John Econopouly

Center for Neural Science, New York University, New York, New York 10003

Michael S. Landy

Center for Neural Science and Department of Psychology, New York University, New York, New York 10003

Received November 24, 1992; revised manuscript received February 18, 1994; accepted March 16, 1994

A new psychophysical methodology is introduced, histogram contrast analysis, that allows one to measure
stimulus transformations, f, used by the visual system to draw distinctions between different image regions.
The method involves the discrimination of images constructed by selecting texture micropatterns randomly
and independently (across locations) on the basis of a given micropattern histogram. Different components
of f are measured by use of different component functions to modulate the micropattern histogram until
the resulting textures are discriminable. When no discrimination threshold can be obtained for a given
modulating component function, a second titration technique may be used to measure the contribution of that
component to f. The method includes several strong tests of its own assumptions. An example is given of
the method applied to visual textures composed of small, uniform squares with randomly chosen gray levels.
In particular, for a fixed mean gray level L and a fixed gray-level variance o-2, histogram contrast analysis is
used to establish that the class S of all textures composed of small squares with jointly independent, identically
distributed gray levels with mean /ir and variance a2 is perceptually elementary in the following sense: there
exists a single, real-valued function fs of gray level, such that two textures I and J in S are discriminable
only if the average value of fs applied to the gray levels in I is significantly different from the average value
of fS applied to the gray levels in J. Finally, histogram contrast analysis is used to obtain a seventh-order
polynomial approximation of fs.
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1. INTRODUCTION

We are constantly assailed by distinctions drawn for us
in perceptual space-time preceding any conscious effort
on our part. The spatial, temporal, and spatiotemporal
boundaries, gradients, and other more complicated modu-
lations of sensed quality that compose the fabric of reality
are all there for us beforehand. They are preliminary to,
and taken for granted by, consciousness.

In this paper we describe a new psychophysical meth-
odology for studying the computations that underlie
such perceptual distinctions: histogram contrast analy-
sis. The theory underlying the technique is developed
in Section 2. Our aim in Section 1 is to motivate that
discussion. Toward this end we begin by elaborating the
shortcomings of the classical method of increment thresh-
olds as a tool for studying perceptual distinctions. We
then introduce histogram contrast analysis as a prefer-
able approach and proceed to describe the method infor-
mally as it might be applied to studying the mechanism
underlying a certain class of visual texture distinctions.
In Section 3, after the formal elaboration (in Section 2) of
the theory and methods of histogram contrast analysis,
we describe an actual application of the technique to the
example introduced at the end of Section 1.

A. Background: The Method of Increment Thresholds
Since the publication of Fechner's book in 1860,1 the pri-

mary psychophysical tool for investigating how perceptual
distinctions are drawn has been the method of increment
thresholds. In the simplest sort of application of this
method, it is presumed that there exists a single function
m that defines the relative impacts on a given sensory
system (e.g., the auditory system or the visual system) as
a whole of different values of a given physical parameter
v (e.g., the amplitude of a tone or the intensity of a light).
It is always assumed that m is a monotonic function of
v. The subject is asked to distinguish between regions A
and B of the visual field (separated in time and/or space)
differing in the value of v. It is assumed that the subject
is able to draw the distinction only if

m(the greater value of v) - m(the lesser value of v)

2 threshold (1)

for some constant threshold (i.e., some threshold indepen-
dent of the values of v being compared). If this assump-
tion holds, then we can construct the function m (up to
arbitrary additive and multiplicative constants) by vary-
ing the lesser value of v and in each case determining the
greater value of v for which the subject can just barely
draw the distinction between the regions differing in v
value (e.g., she or he makes a correct forced choice 75% of
the time). In effect, the subject is providing an estimate
that is approximately proportional to the derivative of m.
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B. Method of Increment Thresholds and
the Problem of Adaptation
The basic problem in interpreting increment thresholds
derives from the fact that the sensory impact of a region
of the visual field painted a given value often depends
critically on the context of that region (i.e., on the values
surrounding the region in space and time). Consider,
for instance, the case of visual lightness perception. It
has long been recognized2 that the lightness of a patch
of the visual field depends not so much on the absolute
luminance of the patch as on the luminance of the patch
relative to the average level of luminance to which the
eye has adapted. Indeed, it is now well documented that
adaptive gain-control mechanisms play a critical role in
visual signal transduction, from the retina on up through
higher levels of processing (e.g., Refs. 3-5). Above the
level of the retina, information about the mean luminance
of the display being viewed has largely been removed from
the transmitted signal.

Let S be a stimulus assigning a luminance value to
each point (x, y) in the visual field. It is now generally
thought that the signal that survives these early contrast
gain-control mechanisms is reasonably well approximated
by a contrast modulation function; that is, a function Cs

of the following sort:

Cs(x, ) - S(x, y) - local averages(x, y) (2)
local averages(x, y)

where local averages(x, y) is the average luminance of S
taken over all points in some neighborhood of (x, y).

Note that if S has local average luminance that is con-
stant over space and is equal to the global mean lumi-
nance ,u of S, then

CS(x, A = S(x, y) - t .(3)

In light of Eq. (3), consider the impact, for higher-level
visual processes, of occurrences in S of luminance v. If
S(x, y) = v for some (x, y) in the visual field, then

Cs(x, ) = -L. (4)

That is, given adaptation to a patterned field of mean
luminance ,u, the impact of different luminances v for
higher-level visual processing is a linear function of v with
slope 1/,u. Indeed, precisely such a linear relationship
has been observed in the firing rate of cat retinal gan-
glion cells in response to suprathreshold increments and
decrements over a moderate range from a given level of
adaptation. 4

Suppose, however, that one were to assume (mistak-
enly) that there exists a single function m, as given in
Eq. (1), that directly registers the impact for higher-level
visual processes of any luminance v, regardless of the
context in which v appears (e.g., regardless of adapta-
tion level). This was, in fact, the assumption underlying
Fechner's method.

To measure the function m, which maps luminance into
just-noticeable differences (JND's) of elicited sensation,

one might use the method of increment thresholds as
follows: set v equal to a fixed luminance level; then,
for i = 1, 2, ... , experimentally determine the luminance
vi for which a subject can just detect a small spot of
luminance vi on a background of luminance vi- 1.

If reality is reflected by Eq. (4) and adaptation level is
set primarily by the background luminance, then for the
subject to just perceive a small disk of luminance w > v
appearing on a uniform background of luminance v we
must have

w - v = threshold,
v

(5)

or Weber's law. From this empirical result and our
untested and mistaken assumption of a single function
m governing threshold regardless of context, we conclude
that m is logarithmic.

Here is the main point: we might have thought that
the JND was a unit of measurement of "nerve states" (in
the sense of Mfiller6 ); we might have thought that, by in-
creasing stimulus intensity at some point in the visual
field so as to double the number of JND's above threshold
of that point, we could double the firing rate of some set
of neurons monitoring intensity at that point. This was
the presumption driving the construction of the mapping
m with use of the method of increment thresholds. How-
ever, if the true state of nature is given by Eq. (2), then
the JND is a theoretically meaningless unit of measure-
ment because it does not predict how the visual system
codes stimulus strength.

It has become clear over the past two decades that it
does not make sense to try to summarize with a function
such as m the effect that a point of light of a given
intensity has on the visual system as a whole. There are
many parallel processes executed by the visual system in
which a point of light plays a variety of roles.

However, as we shall argue, it is often possible to de-
termine the effect of a point of light for a visual subsys-
tem that draws a specific sort of distinction in the visual
field. Indeed, in Section 2 we describe a method, his-
togram contrast analysis, that is specifically tailored to
this task. In Section 3 we present the results of experi-
ments in which histogram contrast analysis is applied
in studying the mechanism that draws distinctions be-
tween textures in which the visual field is tiled with small
uniform squares of different intensities. We shall show,
for a given class of such textures, that texture segrega-
tion performance may be modeled with use of a single
function that codes intensity. Histogram contrast analy-
sis provides strong empirical tests that justify this claim
(Subsections 2.D and 2.E).

C. One Solution: IID Textures
How can we investigate the way in which the visual sys-
tem codes light intensity, given that it changes its char-
acteristics as it changes its state of adaptation? One
approach (the approach taken here) is to use stimuli that,
although they are composed of multiple gray levels, in-
duce a constant state of adaptation in the visual system.
In this paper we define and explore a simulus set that
enables this to occur: textures composed of jointly in-
dependent, identically distributed, random microcompo-
nents (IID textures).
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(a)

Fig. 1. IID textures for a micropattern set r of small gray
squares of various luminances. (a) the micropattern set ; (b) Iu
for U, the uniform distribution (in this and subsequent panels the
texel distribution is shown in an inset); (c) IU+A1; (d) IU-A1; (e)
IU+A2; (f) IU-A2; () IU+A3; (h) IU-A3; (i) I+A 4; (j) IU-A4 . The
set of modulators Ai is defined in Subsection 3.A. The visible
distinctions between (g) and (h) and between (i) and (j) are
for texture pairs with equal mean and variance. Hence such
distinctions cannot be drawn simply on the basis of average
luminance or contrast.

Consider, for example, the textures illustrated in Fig. 1.
Each texture consists of a grid of squares of uniform in-
tensity [chosen from among those in Fig. 1(a)]. For a
given texture patch the intensity of each square is cho-
sen randomly, and different squares are colored inde-
pendently. (The square is called a texture element, or
texel.) Thus the generation of such a patch of texture is
governed entirely by the probability distribution that
determines the likelihood of each possible intensity's be-
ing chosen. For example, Fig. 1(b) shows a patch of
texture in which the uniform distribution was used to
generate the texture (so that all gray levels were equally

likely). (In this and subsequent stimulus figures the
texel probability distribution is shown in an inset.) In
Figs. 1(c) and 1(d) two linear distributions were used:
the left-hand texture favors brighter texels, and the right-
hand texture favors darker texels. The difference in the
mean luminances of these two textures elicits a clear
lightness boundary between them. In Figs. 1(e) and 1(f)
two parabolic distributions were used: the left-hand tex-
ture favors white and black texels, and the right-hand
texture favors gray texels. These two textures have the
same mean luminance, and hence they have approxi-
mately equal average lightness. However, the left-hand
texture has a higher variance than the right-hand texture,
generating a clear contrast boundary.

In the texture pairs just considered, segregation was
possible because of a difference in mean luminance or
mean contrast between the two textures. Such differ-
ences are precisely the sorts that one might expect to
engender a change in state of adaptation by means of a lu-
minance or contrast gain-control mechanism.5 However,
most current theories of adaptation predict that adapta-
tion will remain constant across a set of stimuli that have
equal mean (average luminance) and variance (contrast
power).

With this in mind, consider the texture pairs in
Figs. 1(g) and 1(h). The two texel gray-level distribu-
tions here have equal mean and variance, and thus the
two textures have approximately equal average lumi-
nance and contrast. Thus it is reasonable to expect that
the state of adaptation will be constant across these two
patterns. The two patterns also have identical spatial
structure (a grid of squares). Yet the two patterns segre-
gate reasonably easily. A second example of this sort is
given in Figs. 1(i) and 1(j). We shall show how one
may use such texture pairs in psychophysical tasks to
learn about early nonlinearities in the visual system.
Although the techniques introduced in this paper are
quite general, for concreteness we shall continue to focus
on the segregation of IID textures composed of uniform
gray squares (as in Fig. 1) as our canonical example, and
in Section 3 we shall demonstrate an application of the
method by using such textures.

D. Texture Segregation Models
The literature on texture segregation has been concerned
primarily with differences in spatial structure on either
side of a texture boundary that lead to easy, preatten-
tive texture segregation (see, e.g., Ref. 7). There was re-
cently proposed a class of models of texture segregation
that, although different in details, share the same basic
form (Refs. 8-16; see also Refs. 17 and 18). We term this
the back-pocket model of texture segregation, because tex-
ture perception researchers routinely pull it out of their
back pockets to make sense of new instances of texture
segregation. These models take for granted that visual
processing begins by the application to the visual input of
a set of linear filters that are spatially localized, bandpass
in spatial frequency, and orientation tuned, as has been
found both psychophysically and physiologically (Refs. 19
and 20). Back-pocket models differ in how these linear
filter outputs are handled, but they all share a common
structure. Processing begins with a measurement phase
and proceeds to a surveying phase, as follows:

ROX** IMOX
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Fig. 2. (a) Landy-Bergen 10 ' 14 model, which is an example of the back-pocket model of texture segregation. The input image is

processed by a number of linear filters varying in dominant orientation and spatial frequency. Within a given scale each oriented
filter output is squared (computing a texture energy), orthogonal orientations are put in opponency, and these opponent responses

are divided by the sum of all four oriented energies as a form of contrast gain control. The intent is to convert an input textural

difference into a difference in intensity of response. Finally, an edge detector is applied to localize such intensity edges. (b) For

the textures illustrated in Figs. 1(g)-1(j), this much simpler model may suffice. It corresponds to a single channel of the model in
(a) with no up-front linear filtering and a single pointwise nonlinearity.
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1. In the measurement phase
a. Each member of some set of linear filters is ap-

plied to the retinal input, producing a set of spatial
functions (or neural images), one per filter.

b. The resulting set of spatial functions is collec-
tively subjected to some sort of spatially local nonlinear
processing. In the simplest variants of the back-
pocket model, this processing consists merely of the
application of a function (e.g., a square or absolute
value) to the output of each filter point by point in
space.

The entire set of resulting spatial output functions
is then passed to
2. The surveying phase, in which the visual field is

partitioned into regions within which the measurement-
phase output functions are all relatively constant in value
and between which (at least some of) these output func-
tions diverge in value.

An example is the model proposed by Landy and
Bergen1 0"4 as illustrated in Fig. 2(a). This model be-
gins by application of a set of linear filters at various
spatial scales and orientations. The second, nonlinear
stage (stage b of the measurement phase) involves sev-
eral computations, including a pointwise nonlinearity (a
square or texture energy computation), an opponency
between orthogonal orientations, and a contrast normal-
ization. In the surveying phase, one looks for changes in
the measurement-phase output between different regions
by applying an edge-enhancement mechanism.

How would a back-pocket model such as that of Landy
and Bergen fare with the IID textures of Fig. 1? Here,
there is no difference in spatial structure between the
paired texture regions. If a filter has a receptive field
that is large relative to the squares that make up the
textures, then its output will be a weighted sum of these
randomly chosen texels. Thus the central limit theorem
implies that the output of this receptive field will be
Gaussian and hence a function only of the mean and vari-
ance of the texel distribution (see Subsection 3.A below
for further discussion). A measurement phase channel
of the texture model with use of that filter would be
capable of segregating the texture pairs of Figs. 1(c)- 1(f)
but would be blind to the texture differences in
Figs. 1(g)-1(j), because those texel distributions are con-
strained to have equal mean and variance on either side
of the boundary.

The ability to segment IID textures such as those in
Figs. 1(g)-1(j) implies that there exists a measurement-
phase channel other than those pictured in Fig. 2(a).
Figure 2(b) shows a model of a measurement-phase chan-
nel that could account for this behavior. This channel
differs from standard back-pocket model channels in that
it uses no linear filter as the first stage in its measure-
ment transformation; rather, it applies a nonlinear func-
tion directly to the retinal input, point by point in space.
The technique described in this paper allows one to deter-
mine whether the visual system applies a unique channel
of this form. Further, once it is verified that only one
such measurement-phase channel is being applied, the
technique can be used to measure the form of the non-
linear function being used in this channel.

E. Histogram Contrast Thresholds
To investigate the model shown in Fig. 2(b) we must
first determine a psychophysical measure of the strength
of texture segregation in texture pairs such as those in
Figs. 1(g)-1(j). This paper introduces such a measure:
the histogram contrast threshold. The basic method is
illustrated in Fig. 3. This figure shows a sequence of tex-
ture pairs involving a texel distribution for the left-hand
texture and the inverted distribution for the right-hand
texture. The functional form of the distributions is iden-
tical in all textures; it is the uniform (flat) distribution
modulated by a (third-order) polynomial chosen so as to
keep the mean and variance of resulting texture gray lev-
els constant and equal to that of the uniform distribution
[Fig. 1(b)]. However, the amplitude of this modulating
function is varied across texture pairs. As this amplitude
decreases, the paired textures increasingly resemble the
texture generated by the uniform distribution and thus
increasingly resemble one another. Hence, lower ampli-
tude of modulation results in poorer texture segregation.

||( a)?X7~~ ~V~)

Fig. 3. Histogram contrast threshold. The figure illustrates a
series of IlD texture pairs with increasing amplitude of modula-
tion of the probability distributions used to generate the textures.
Here a third-order polynomial A3 was used as the modulator
of the uniform distribution U [as in Figs. 1(g) and 1(h)]. The
histogram contrast threshold is the amount of modulation that
results in threshold segregation performance (e.g., 75% correct
on a forced-choice discrimination task).
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The psychophysical technique employed is the obvi-
ous one: a contrast threshold. However, it is not the
stimulus contrast that we vary. It is rather the con-
trast in the histogram (or probability distribution) used to
generate the texture that we vary. By applying typical
psychophysical paradigms (forced-choice, staircase proce-
dures), we can determine threshold histogram contrast.
It will be shown (Subsections 2.C and 2.D below) that the
result of this procedure gives us a means of estimating
the form of the unknown nonlinearity shown in Fig. 2(b).

F. Summary and Overview
The bulk of this paper concerns the mathematical basis
of our techniques. Considerable formalism is required
for justifying the statements made in the last two sec-
tions. However, the broad outline of the technique is as
we have just described it: we (1) define a set of functions
(to be used to modulate IID texture histograms) sufficient
to generate boundaries between textures with equal mean
and variance, (2) measure the histogram contrast thresh-
old for each such function, and (3) use these measure-
ments in conjunction with various side measurements and
controls to estimate the form of the pointwise nonlinearity
in the texture channel used to segregate these patterns.
The method includes a number of checks to verify that
the simple, single-channel model holds for this class of
stimuli.

The actual technique is, in fact, quite general. It can
be applied to other sorts of visual stimuli as well as to
nonvisual stimuli. It can also be used in situations in
which discrimination between textures involves multiple
channels. Moreover, we shall introduce additional psy-
chophysical techniques with greater sensitivity than that
of the basic histogram contrast threshold. Nonetheless,
it will help to keep the above example of IID gray-level
textures in mind as you proceed.

Section 2 outlines the technique in broad mathematical
generality. Section 3 applies the technique to the case of
IID gray-level textures and shows both that the nonlin-
earity applied to input luminance may be measured pre-
cisely by the technique and that the cross checks generally
succeed for this class of stimuli. For a first reading you
may wish to scan Section 2, concentrate on the applica-
tion of the method in Section 3, and later return to wade
through the notation and proofs.

2. DETAILED DEVELOPMENT OF
HISTOGRAM CONTRAST ANALYSIS
The purpose of the following prefatory remarks is to lead
the reader informally from the view of texture perception
expressed by the back-pocket model to the slightly more
general perspective that we formalize in this section.

It is important to realize that the back-pocket model
works because each measurement phase channel is, in its
own characteristic way, differentially sensitive to differ-
ent textures. By this we mean that the average output
value over space of a given channel varies from texture
to texture. Consider, for instance, a measurement-phase
channel whose linear filter is tuned to high frequency,
vertically oriented texture and whose nonlinear stage con-
sists of squaring the filter output point by point in space.

The average response over space of just the linear portion
of this channel will be 0 to any texture whatever. Thus,
by itself, the linear filter fails to be differentially sensitive
to different textures. However, by applying the squar-
ing nonlinearity to the filter output, we derive a channel
that is differentially sensitive to high-frequency vertical
texture; the average response over space of this nonlin-
ear channel is greater for high-frequency vertical texture
than for lower-frequency or nonvertical texture.

This differential sensitivity permits back-pocket-model
channels to play a role in texture discrimination analo-
gous to the roles played by different cone classes in light
discrimination. Each cone class is differentially sensi-
tive to different lights, and two lights are discriminable
only if at least one cone class has a different average
response to one light than to the other. In precisely
the same way, under the back-pocket model two textures
are discriminable only if at least one measurement-phase
channel has a different average response to one texture
than to the other.

There is nothing sacrosanct about the back-pocket
model assumption that measurement-phase channels con-
sist of linear filters followed by pointwise nonlinearities.
This is merely a convenient way of constructing an image
transformation that is differentially sensitive to different
textures. Accordingly, we drop all assumptions about
the internal workings of measurement-phase channels
and introduce the term (texture) measure to refer to any
image transformation whose average response over space
is different for different textures.

We suppose that the visual system routinely applies
some fixed set of texture measures to the retinal input
and that two textures are discriminable only if they elicit
different average responses from at least one of these
texture measures.

In light of these reflections, consider some set fl of mi-
cropatterns, all of the same rectangular shape and size,
from which we shall construct various IID textures. In
Fig. 1 the micropatterns used are all uniform squares
of different intensities. However, the micropatterns con-
tained in Q need not be uniform patches; they can be
arbitrarily patterned. A given texture measure is likely
to be differentially sensitive to the different elements of
fl in a sense akin to that in which a given cone class is
differentially sensitive to quanta of different wavelengths.
Just as quanta of different wavelengths may elicit differ-
ent levels of excitation in cones of a given class, different
micropatterns of il may elicit different levels of excita-
tion in a given texture measure.

This effect leads to the notion of the differential sen-
sitivity function dT of a given texture measure T. For
any micropattern ot E fQ, dT(W) gives the average level
of excitation induced in T by an occurrence of (o (in some
IID texture of ). Thus the function dT is analogous to
the absorption spectrum of the photopigment of a given
cone class. The absorption spectrum gives the sensitiv-
ity of the cone class to quanta of different wavelengths;
dT gives the sensitivity of T to different elements of fQ.

The methods that we develop will allow us to inves-
tigate hypotheses concerning the differential sensitivity
functions of texture measures responsible for drawing dis-
tinctions between IID textures. For example, for any mi-
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cropattern set Q we can test the hypothesis that the visual
system has only one texture measure T that is differen-
tially sensitive to the micropatterns in . Moreover, if
this hypothesis is supported, our methods will allow us to
measure dT with arbitrary precision. A full description
of the general class of hypotheses that can be addressed
by histogram contrast analysis must await the discussion
(in Subsection 2.A.8 below) of spaces of IID textures.

The outline of this section is as follows. Subsec-
tion 2.A sets out the definitions and notation needed
for the basic theory of histogram contrast analysis.
The development of the theory begins in Subsection 2.B
with the definitions surrounding the notion of a per-
ceptually elementary space of IID textures and con-
cludes in Subsection 2.C with the results from which
the usefulness of the histogram contrast threshold de-
rives. There follows an elaboration of the principal
methods used in histogram contrast analysis: cancel-
lation tests (Subsection 2.D) and the method of titration
(Subsection 2.E).

A. Preliminaries
This section consists primarily of definitions required for
developing the theory. A formal description is given of
an IID texture. The notion of a texture measure T whose
response to an IID texture is a linear combination of its
responses to the individual texels of that texture leads to
a formal definition of the differential sensitivity function
of T.

For definiteness, a simple computation is assumed for
the surveying stage of the back-pocket model; specifically,
we assume that texture boundaries are detected by the
application of linear edge detectors to texture measure
output.

Finally, the linear algebraic notion of a space of IID
textures is introduced (formalizing the kinds of textures
shown in Fig. 1).

1. Notation Used for Stimuli and Stimulus
Transformations
We use the term stimulus to refer to any function I:R2

R, where the plane RI2 represents visual space and I(x, y)
denotes the value assigned by I to the point (x, y) in
space. A transformation T is a function mapping the set
of all stimuli into itself. For any stimulus I, the stimulus
that results from applying T to I is denoted T(I), and the
value assumed by T(I) at the point (x, y) E 2 is denoted
[T(I)](x, y). We shall refer to some transformations T as
texture measures. Any such T can be assumed to be both
spatially local and shift invariant.

2. Notation Associated with ID Textures
Let fl be a set of spatially local visual stimuli. For in-
stance, we can let fl be a set of small uniform squares of
various intensities (as in Fig. 1), or, more generally, we
can take (2 to be any set of micropatterns. We now par-
tition the visual field into regions (texels) the size of the
micropatterns in . A texture is generated by a mi-
cropattern of fl being painted into each texel. We focus
exclusively on visual textures whose texels are painted
with jointly independent, identically distributed, random
elements of Q2. Hence we call any such texture an IID
texture of (Q. Any IID texture of (2 is completely speci-

fied by the probability distribution p used to draw each
texel from Ql. Accordingly, we call p the texel distribu-
tion of the texture.

For any probability distribution p on Q2, we write Ip
for an IID texture with texel distribution p. In addition,
we shall sometimes write Xp for an Ql-valued random
variable with distribution p. For a given texel in the
visual field, we write Ip(T) for the micropattern painted
into 7 by Ip. Thus Ip(r) is an Q-valued random variable
distributed as Xp .

Formally, Ip is a family of jointly independent random
variables (each distributed as Xp) assigned to the texels
tiling the visual field. Thus, for nontrivial distributions
p, Ip typically has many different possible realizations J.
Any such J is simply an image, a real-valued function of
the visual field. As a realization of Ip, however, J has a
probability. This probability is simply the product, over
all texels , of p[J(7)].

Note that for large patches of the texture Ip the propor-
tions of different micropatterns occurring in texels (i.e.,
the histogram of Ip) will be approximately given by p.

3. Definition (of the Cross Correlation of Two Functions)
Let f and g be real-valued functions of a finite set Q2.
Then the cross correlation of f and g is defined by

f g= f(w)g(w)-
0) En

(6)

4. Notation Associated with Random Variables
For any real-valued random variable Y we write E[Y] for
the expectation of Y and var[Y] for the variance of Y.

In this connection note the following facts. Let p be a
probability distribution on a set Q2 of micropatterns, and
let Xp be an Q2-valued random variable with distribution
p. Then, for any function f : 2 - , f(Xp) is a real-
valued random variable. Moreover,

E[f(Xp)] = f(ow)p(ow) = f - p,v Efl
varif (Xp)] = E[f 2(Xp)] - E 2If(Xp)] -f2_p - (f_

(7)

p) 2 ,

(8)

where f2(w) = [f((w)]2 for all co E Q2.

5. Notation Used for Constant Functions
For any set B and any a E R we write r for the function
that assigns the value a to every b E B. In particular,
we shall have occasion to refer to constant functions of
space (in which case the set B = R2, the image plane)
as well as to constant functions of a micropattern set (2.
For instance, the function 1: Q - R satisfies 1(w) = 1 for
all E , and likewise the function 0: F211 ;! satisfies
O(x, y) = 0 for all points (x, y) in space.

6. Surveying Phase: Assumptions and Notation
As discussed at the beginning of Section 2, a texture mea-
sure T that is useful in segregating a given texture will
convert a textural difference in its input into an inten-
sity difference in its output. Thus the surveying phase
need only compare the output of T in two abutting image
regions and respond if the regions differ sufficiently. Al-
though there are elaborate ways to accomplish this goal,
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the straightforward approach is to use a linear edge detec-
tor. For the sake of definiteness we assume this model.

When we think of a luminance-edge detector, we think
of a neuron whose receptive field has elongated, adjacent
excitatory and inhibitory regions that allow the neuron
to detect spatial differences in retinal excitation. We
suppose that the surveying-phase neurons involved in
detecting texture edges on the basis of the output of the
texture measure T work similarly; however, instead of
detecting spatial differences in retinal excitation, these
mechanisms detect spatial differences in excitation within
the array of neurons composing T. We can conveniently
capture the general sort of computation performed by such
a linear T-edge detector in terms of the following notation.

Definition (of an additive pooler). For any image J
and any nonnegative, real-valued function g of the visual
field, let

(J)g = fL f g(x, y)J(x, y)dxdy. (9)

Because g is nonnegative, ()g can be viewed as aggregat-
ing contributions from J with varying degrees of emphasis
from different points in the visual field. Accordingly, we
call ()g an additive pooler.

In this connection we call

(1)g = f f g(x, y)dxdy (10)

the gain of ()g and

(g)g = fL F g(x, y) 2dxdy (11)

the energy of ()g.
Consider, then, a T-edge detecting neuron, TED, whose

excitatory lobe pools its input according to the spatial
weighting function gexcit and whose inhibitory lobe pools
its input according to the spatial weighting function ginhib -

We can now represent the response of this neuron to an
input stimulus J by writing simply

TED(J) = (T(J))gxejt - (T(J))gjilib. (12)

7. Additive Texture Measures and
Differential Sensitivity Functions
We call any texture measure T additive with respect to
a given micropattern set fl if T's response to any IID
texture of fl is equal to the sum of T's responses to the
individual texels of this texture. For any such T (addi-
tive with respect to Q) we can predict T's response to
any IID texture of fi if we know how it responds to the
individual micropatterns in fl. Moreover, because (by
assumption) the surveying phase pools the output of T
additively over multiple texels, the detailed spatial form
of T's response to any given micropattern w) E Q is ir-
relevant to the distinction-drawing process. The only
thing that matters, the only thing that we need to know,
is the sum over space of T's response to co. Thus T might
as well be simply replacing each micropattern co in any
of these IID textures with a uniformly painted texel of
intensity dr(w)/texel, for

dT(f) f[T(aone)Y(X, y)dxdy (co E (1), (13)

where COalone is the image containing a single occurrence
of w in an otherwise uniform field of mean luminance.
We call the function dT: i - R the differential sensitivity
function of T with respect to fl.

In light of these observations, consider TED the T-edge
detecting neuron whose response to an arbitrary stimulus
J is given by Eq. (12). If J is an IID texture of El, and if T
is additive with respect to fl, then TED's response to J is
dictated by dT [Eq. (13)]. Each texel r of J exerts a total
impact in this response equal to dT[J(r)]. We express
this fact by rewriting Eq. (12) as

TED(J) = (dT 0 J)gexcit - (dT J)gihib, (14)

where we use the notation dT o J to represent the image
that results from painting each texel r uniformly with
the intensity dT[J(r)].

8. Background Linear Algebra and IID Texture Spaces
Histogram contrast analysis makes substantial use of lin-
ear algebra. In particular, the modulators that we use
(e.g., those shown in Fig. 1) will make up an orthogonal
set of functions. They will allow us to determine a linear
decomposition of the sensitivity function dT of the mea-
sure T used to discriminate the textures for the simple
model of Fig. 2(b). In this section we state the necessary
facts and definitions.

a. Definition (of a linear combination of functions and
of a set closed under linear combination). Let G be a set
of real-valued functions of a set Y. Any function f is said
to be a linear combination of G if there exist real numbers
ag such that f = gEG agg. G is said to be closed under
linear combination if every linear combination of G is an
element of G. Here we consider linear combinations of
real-valued functions of the micropattern set fQ.

All applications of histogram contrast analysis focus
on spaces of IID textures. This concept depends on the
following notion:

b. Definition (of a reversible modulator). Let p be
a probability distribution on a set (1 of micropatterns.
Then any function 'k : fl -[ R is called a modulator of p
if p + 0 is a probability distribution. If p - 0 is also a
distribution, then 0 is called reversible. In addition, O
is called maximal if AO fails to be a reversible modulator
of p for all A> 1.

For example, the texture pairs shown in Fig. 1 all
use reversible modulators (Al, A2 , A3, and A4 ) of the uni-
form probability distribution U. For i = 1, 2, 3, 4, Ai
is a polynomial of order i. The texture pairs shown are
IU-Ai next to IU+Ai-

The definition of a space of IID textures is analogous to
the standard, linear algebraic definition of a space of func-
tions, but it is complicated, because linear combinations
of modulators of a given distribution p are not necessarily
modulators of p:

c. Definition (of spaces of modulators and of IID tex-
tures). Let fl be a set of micropatterns. Call any set Q
of functions q: - R a space (of modulators) if there ex-
ists a distribution p on fl such that Q is maximal with
respect to the following two properties:

(i) q is a modulator of p.
(ii) q is a linear combination of functions in Q.
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[That is, all q E Q must satisfy properties (i) and (ii),
whereas any q X Q must fail to satisfy at least one of
properties (i) and (ii).] Specifically, we say that Q is a
space (of modulators) relative to p. In addition, we say
that Q is spanned by a subset B 5 Q if any function in Q
is a linear combination of functions in B. In this case B is
called a basis of Q and is said to be independent if none of
its elements are linear combinations of the others. The
dimension of Q is RI for any such independent basis B.
Any space that is a subset of Q is called a subspace of Q.

We call any set S of IID textures of fl a space if there
exists a space Q of modulators relative to some distribu-
tion p on fl such that S = {Ip+q I q E Q}. In this case p
is called the base distribution of S, and Q is called the
modulator space of S.

We shall sometimes say "Q is the modulator space of S,"
without making explicit reference to the base distribution
p. The reader should not infer from such a statement
that there exists only one modulator space of S (i.e., Q).
Rather, such an assertion should be taken as shorthand
for "Q is the modulator space of S relative to the base
distribution p that is used in the current application of
histogram contrast analysis."

Note a few basic facts:
Lemma 1. Let 0 be a set of micropatterns:

a. The set of all IID textures of fl is a space.
b. The empty set of IID textures of fl is a space.

Proof: Let p be a distribution on Q2.
Note that the set Q, of all modulators of p is a space,

since any function q E Q passes both conditions (i) and
(ii) of definition 2.A.8.c., whereas any q X Q, fails condi-
tion (i). Thus the corresponding set Sp of IID textures
Ip+q(q E Qp) is a space. But note that any texel dis-
tribution r can be written as p + q, for the modulator
qr = r - p. Thus Sp contains all IID textures of Q2, im-
plying condition a above.

On the other hand, the empty set ep of modulators of
p vacuously satisfies conditions (i) and (ii) of definition
2.A.8.c [that is, for all q E ep (of which there are none)
q satisfies conditions (i) and (ii)]. However, for any
function q ep, q fails condition (ii), implying condi-
tion b above. D

Lemma 1 gives the largest and smallest spaces of IID
textures of a micropattern set Q2. Typically, however,
we shall be interested in spaces of IID textures falling
between these extremes: nonempty, proper subspaces of
the space of all IID textures of Q2. In applying histogram
contrast analysis to spaces of this sort, we shall need the
following concept:

d. Definition (of the projection of a function into a sub-
space). Let p be a distribution on a set •2 of micropat-
terns; let Q be a space of modulators relative to p, and
let Q' be a subspace of Q. A theorem of linear algebra
asserts that for any basis B' of Q' there exists a basis
B B' of Q. Thus for any q Q there exist real num-
bers ab (for all b B) such that

q= Z_ abb. (15)
beB

Let q be the portion of q generated by only those basis
functions in B'. That is,

(16)q'= abb.
bEBI

It is proven within the theory of linear algebra that q' does
not depend on the specific choices of B' or B. Accordingly,
we drop the reference to B' and B and call q' the projection
of q into Q'.

e. Orthogonal basis sets. Let Y be a set of finite size
N. Then any real-valued functions, f and g, of Y are
called orthogonal if f g = 0.

Let 00, 'ki,..., N-1 be mutually orthogonal, non-O
functions of Y. An important theorem of linear algebra
states that for any function f : Y - tR there exist weights
W0, W1, ... , WN-1 E R such that

N-1
f = Wibi -

i=O
(17)

Specifically, these weights are given by

(18)

Such functions 00, 'ki, ... , N-1 are said to compose an
orthogonal basis of the space of all real-valued functions
of Y.

B. Perceptually Elementary Spaces of IID Textures
In general, histogram contrast analysis is used to test
whether a given space S of IID textures of Q2 is percep-
tually elementary. We define this term precisely below.
For the moment, the reader may rely on the intuition that
a space S of IID textures is perceptually elementary if dis-
crimination between textures of S is mediated exclusively
by a single texture measure T that is additive with re-
spect to Q2. In this case the model of Fig. 2(b) applies to
segregation of the textures in S with dT serving as the
nonlinearity of Fig. 2(b). As we shall try to illustrate in
this section, if S is a strict subspace of the space of all IID
textures of Q2, S may be perceptually elementary even if
there exist multiple texture measures that are differen-
tially sensitive to the micropatterns in Q2.

To see how this can happen, let Q2 be a set of micropat-
terns to which an additive texture measure T is differ-
entially sensitive, and let S be a space of textures with
modulator space Q relative to base distribution p. How-
ever, suppose that dT happens to be orthogonal to all
q E Q (that is, dT q = 0). In this case the projection
of dT into Q is 0. We learn below (proposition 1) that
the observer's ability to segregate texture Ip+q from tex-
ture p-q is a monotonic function of dT q. In particular,
if dT q = 0, then the average response of any T-edge de-
tector to an p+q/Ip-q edge will be 0. This means that T
can play no role in the drawing of distinctions within S.

Conversely, if dT has a non-0 projection into Q, then
T must be relevant to the discrimination of textures of
S. Indeed, if discriminations within Q are determined
exclusively by a unique, additive texture measure T then
the methods of histogram contrast analysis will allow one
(1) to verify that there really is only one such T and (2)
to measure the projection of d into Q.
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1. Signal-Detection Theory and Textural Distinctions
We now take a signal-detection approach to texture segre-
gation. We compute the signal-to-noise ratio for a given
texture measure T, additive with respect to micropattern
set l. Let T be a texture measure, and suppose that T
distinctions are drawn by linear T-edge detectors of the
sort introduced in Subsection 2.A.6. Recall that the re-
sponse of such a T-edge detector, TED, to any stimulus
J is given by

TED(J) = (T(J))gxit - (T(J))gjinh (19)

for some pair of additive poolers ()geXcit and ()ginhib-

Suppose now that Jpq is a stimulus that assigns a patch
of IID texture I, to the region windowed by gexcit and a
patch of Iq to the region windowed by ginhib. In this case
we note that

TED(Jpq) = (T(Ip))gexcit - (T(Iq))gijhib

= (dT ° Ip)gexcit - (dT ° Ia)gihib (20)

Note that TED(Jpq) is a random variable. Moreover, if
gexcit and ginhib pool over sufficiently many texels, then
(by the central limit theorem) TED(Jpq) will be approxi-
mately normal. In this case signal-detection theory as-
sures us that the probability that TED(Jpq) signals the
presence of the 'p/Iq edge in Jpq is a strictly increasing
function of the signal-to-noise ratio

dJq ) IE[TED(Jpq)]l
JPq {var[TED(Jp,q)1}"2

IE[(dT 0 IP)gexcit - (dT 0 Iq)ginhib]l
(var[(dT a Ip)gexcit - (dT 0 Iq)gjib])V 2 (

Of course, T may be only one of many texture measures
that are relevant to the drawing of distinctions within a
given space S of IID textures. However, in the special
case in which T is the only texture measure with a non-0
projection into the modulator space of S, the probability
that the subject will detect the Ip/Iq edge in Jpq becomes
equal to the probability that TED(Jpq) will register the
Ip/Iq edge. In this case we call S perceptually elemen-
tary. The definition of this notion follows.

2. Definition (of a Perceptually Elementary
Space of IID Textures)
Call any space S of IID textures of a micropattern set
Ql perceptually elementary if there exists a function
f: R such that for any Ip, Iq E S, the probability
of observing a distinction between textures Ip and Iq is a
strictly increasing function of

d (p, ) JIE[(f o Ip)gexit - (f Iq)ginhib]li
s q (var[(f Ip)gexcit - (f ° Iq)ginhib)/2 (22)

for spatial poolers ()gexcit and ( with equal gain
[Eq. (10)] and energy [Eq. (11)].

The constraints that (gexcit and (gikiib have equal gain
and energy are necessary to support subsequent in-
ferences. Note, however, that these conditions will
certainly be satisfied by standard sorts of linear edge
detectors in which the excitatory and inhibitory receptive
field lobes are symmetrically related.

As we shall show, it is possible to determine empirically
whether a given space S is perceptually elementary. If
S proves to be perceptually elementary, then we presume
that distinctions within S are mediated exclusively by
a single texture measure T, additive with respect to fl,
and that Eq. (22) is satisfied by f = dT. In this case
the methods of histogram contrast analysis allow us to
measure the projection of dT into the modulator space
of S.

C. Histogram Contrast Thresholds
The stage is now set to formalize and justify the state-
ments originally made in Section 1. Here we define the
histogram contrast threshold, which is a threshold de-
rived from comparisons such as those illustrated in Fig. 3.
We have already defined the class of required stimuli:
textures IP±AJ for a reversible modulator 0 of p. We
have related the observer's performance d' to the output
of the model in response to pairs of textures drawn from a
perceptually elementary space. In this section we com-
pute what the results of this task imply about the function
dT, which governs performance.

Let Ql be a set of micropatterns, and suppose that S is a
perceptually elementary space of IID textures of l. Let
f:Qt - R satisfy Eq. (22), set K1 equal to the gain of each of
the additive poolers, ()gexcit and ()gihib, and set K2 equal
to the energy of each pooler. Throughout this section let
p be a probability distribution on f, let 0 be a reversible
modulator of p, and let Ip+5 and I, be elements of S.

Note the following facts about Ip+o. Because Ip+ is
IID,

E[(f 0 IP+0)gexcit] = KE[f (any texel of Ip+,O)]

= KE[f (XP+0)], 1(23)

var[(f o Ip+)gex~t] = K2 var[f(any texel of Ip+,O)]

==K2 var[f(Xp+0)]. (24)

Similarly, we observe that

E[(f ° Ip_,)giib] = KE[f(Xp_0)1,

var[(f I_+)gihjib] = K2 var[f(Xp_-)]-

(25)

(26)

Consider then a stimulus whose left-hand side is filled
with Ip+,, and whose right-hand side is filled with Ip-0.
Because S is perceptually elementary, the probability of
perceiving the boundary between the textures Ip+,5 and
Ip-0 is a strictly increasing function of

d'(p + 0, P - 0
IE[(f 0 Ip+q)gexcit -(f° ginhib]

(var[(f 0 p+ gecit- (f o -ginhib])

KIE[f (Xp+(k) - f (Xp_,)]l (27)
{var[f (Xp+¢) - f(Xp_0)]}V 2

for

K = K1 /lK. (28)

The preceding observations pave the way for the fol-
lowing proposition, which is the foundation of histogram
contrast analysis. It states that the signal-to-noise ra-
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tio, and hence observer performance on psychophysical
discrimination tasks, is a function of f 0 for O an arbi-
trary modulator of some fixed distribution p. Therefore
it allows one to learn about f, using a task such as that
illustrated in Fig. 3.

Proposition 1. Let p be a probability distribution on
a set f, and let be a reversible distribution modula-
tor of p. Let Xp+0 and Xp_ be independent, fl-valued
random variables with distributions p + and p - ,
respectively. Then, for any nonnegative constant R and
any real-valued function f of fl, the following conditions
[Eqs. (29) and (30)] are equivalent:

IE[f (Xp+o)-f (Xp0)]l = R (29)
{var[f(Xp+o) - f(X_)]} 12 .

For Xp, an fl-valued random variable with distributionp,

R 2 var[f(X)] (30)
(f O) _ R 2 +2 (0

The proof of proposition 1 uses the following:
Lemma 2. Let p be a probability distribution on Ql,

and let be a reversible distribution modulator ofp. Let
Xp+¢, and Xp-,6 be independent 11-valued random vari-
ables with distributions p + Ob and p - , respectively.
Then, for any function f : f - R,

var[f (Xp+) - f (Xp_0)] = 2 var[f (Xp)] - 2(f )2 (31)

for Xp, an fl-valued random variable with distributionp.
Proof:

var[f (Xp+) - f (Xp0)]
= var[f (Xp+o)] + var[f (Xp)]

= f2 (p + ) - [f_ (p + )]2 + f 2 (p - )
- [f (p -)]2

= f2 p +f2 O -,[(f p)2 +2(f p)(f ) +(f )2]
+ f2 p _ f2 - [(f p)2 - 2(f p)(f. ()
+ (f 0)2]

= 2f2 . p - 2[(f . p)2 + (f. )2]

= 2 var[f (Xp)] - 2(f )2. (32)

a space of IID textures relative to a distribution p on
micropattern set fQ. Consider a psychophysical task in
which the subject is asked to detect the orientation (e.g.,
horizontal versus vertical) of a boundary between two IID
textures in S: I,+p and Ip_+. More specifically, let us
use a staircase to vary the amplitude A of the modula-
tor b of p from trial to trial in order to determine that
value of A for which the subject detects the boundary be-
tween Ip+Ao and 'p-Ap with probability a (e.g., a might
be 0.75). (Of course, it is possible that no such value of
A exists. That is, the subject may not be able to detect
a boundary between 'P+Ak and Ip-A for any value of A
satisfying the constraint that both p + AX and p - AX
be probability distributions.) If S is perceptually elemen-
tary, then this level of performance corresponds to some
fixed value, Ra, of d'(p + AO, p - AO) [Eq. (22)]: that
is, the subject detects the boundary with probability a for
the distribution modulator amplitude A such that

d'(p + AX, p - Ap)

IE[(f Ip+AO)gexcit - (f Ip-AOk)ginhibIl = R
(var[(f p+A, -gexcit - (f Ip-Ao>gihib]) a -

(35)

Equation (27) implies that Eq. (35) holds if and only if (iff)

IE[f (Xp+Ao) - (XP-A0)]I Ra
{var[f (Xp+Afi) -f (Xp-A )]}112 K (36)

But now, from proposition 1, we see that Eq. (36) holds iff

)2 Ra2 var[f(Xp)](f A2- Ra2 + 2K2
(37)

And from Eq. (37) we reason that Eq. (35) holds iff

If k1 = ALPta(P) (38)

for

"= a var[f(X)] ]2

We now proceed with the proof of proposition 1. Note
first that

IE[f(Xp+o) - f(Xp-0)] = E[f(Xp+O)] - E[f(Xp_0)]I

= If p + f - (f p - f ) = 21( f )1 - (33)
From Eqs. (31) and (33) we see that Eq. (29) is equivalent
to

{2 var[f(Xp)] - 2(f S)2}112
= B. (34)

Some algebra yields the result. U
To see the relevance of proposition 1 to the study of vi-

sual perception, let us relate the texture-discrimination
task illustrated in Fig. 3 to the proposition. Let S be

(39)

That is, If Xl is inversely proportional to Al. Equa-
tion (38) leads us to call AI the a histogram contrast
threshold of relative to p.

Note: Histogram contrast thresholds are absolute val-
ues and hence are never negative. Henceforth any value
referred to as a histogram contrast threshold is to be un-
derstood as a nonnegative quantity. We shall generally
drop the reference to a when it is irrelevant. In this
case the reader may assume an arbitrary, fixed a (e.g.,
a = 0.75).

D. Cancellation Tests and the Characteristic
Function of a Space of IID Textures
We have just seen how a psychophysical discrimination
experiment (the experiment of measuring the histogram
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contrast threshold of a modulator 4) yields information
about the hypothetical visual function f. In this section
we explore the ramifications of these facts when we have
mutually orthogonal modulators qbi, 02, ... , ON. As we
show below, it is possible to determine whether the space
S spanned by 01, 02, ... , bN relative to some base dis-
tribution p is perceptually elementary; that is, it is pos-
sible to determine whether there exists a single function
f : -- R [as in the model of Fig. 2(b)] capable of explain-
ing all discriminations within S [by satisfying Eq. (22)].
Moreover, if such a function f exists, it is possible by psy-
chophysical means to measure precisely the projection of
f into S (i.e., that part of f responsible for making those
texture discriminations).

A strategy for determining the projection of f into the
space of functions spanned by S1, 02, . O. , ;bN is suggested
by Eq. (38).

Specifically, if we could obtain Ai, the histogram con-
trast threshold relative to p, of each basis element Xi,
then we would know that

If Oil = TP) i=1, 2, ... ,N, (40)
Ai

where T(p), defined by Eq. (39), is a constant that is
independent of i.

Suppose for the moment that all these thresholds Ai
exist (are empirically obtainable). In this case Eq. (40)
implies that

f -,O _ P(p)f~~k~Ai i = 1, 2,..., N.

If we could untangle the relative signs of the dot prod-
ucts in Eq. (41), then, using Eq. (17), we could synthesize
the function

N

A = I Xi (42)
i=l Xi X i

It is a consequence of the theory of linear algebra that
the function fs is uniquely defined [up to the unknown
and perceptually irrelevant scale factor TP p)] and is inde-
pendent of the particular basis used to span the space of
modulators that generate S relative to p. Accordingly,
we call fs the characteristic function of S. Indeed, if
we suppose that distinctions within S are mediated ex-
clusively by a single, additive texture measure T, then
we must suppose that f = dT. Hence fs is the projec-
tion of dT into the subspace of modulators spanned by
b1, 0>2, -- , ON-

In fact, this untangling of relative signs is not difficult.
For this purpose we use a method called the cancellation
test. For any pair of basis elements, hi and fj, from
Eq. (41) we reason that either

(a) Ifs (AiXi + AjXj)l = 2 P(p),

(b) Ifs (Aiqi - Aj4j)l = 0, (43)

or else

(a) Ifs (Api + Ajtj)I = 0,

(b) Ifs (Ai4i - Aj~j)l = 2P(p). (44)

As we shall now explain, Eqs. (43) and (44) allow us to

determine the relative signs of fs - Oi and fs - j. In

the process we also subject our initial assumption that S
is perceptually elementary to a strong empirical test.

If the set S is perceptually elementary, then for any
pair of basis elements, Xi and j, one of the condition
pairs in Eq. (43) and Eq. (44) must hold.

Condition (a) of Eqs. (43) implies that the histogram
contrast of the distribution modulator A i + Aj j is at
double the threshold level. In other words, Eqs. (43) im-
ply that the histogram contrast threshold of the distribu-
tion modulator Aii + Aj is 1/2. Thus, if condition (a)
of Eqs. (43) holds, the subject should be able to de-
tect the boundary between IID textures I+(Aiji+Ajyj)12

and Ip-(Ajxi+AjpjI2 with precisely threshold probability.
Condition (b) of Eqs. (43) implies that the histogram con-
trast threshold of Ai Xi - Ajo relative top is empirically
unobtainable. Thus, if this condition holds, the sub-
ject should be unable to distinguish Ip+B(Aiti-Aj~j) from
Ip-B(Ai4i-Ajqj) for any value of B whatever.

Equations (44) express the mirror symmetric condition
in which the histogram contrast threshold of Ai Xi + Ajqj
relative to p is unobtainable and the histogram contrast
threshold of Aifi - Aj~ j relative to p is 1/2.

For any given pair of basis functions, hi and qj, if the
histogram contrast threshold of Ai i + Aj j relative top
is 1/2 and the histogram contrast threshold of Ai i -
Ajqj relative to p is unobtainable, then our data are
consistent with Eqs. (43), and we presume in this case
that the coefficients of Xi and As in the synthesis of fs
have the same sign. Otherwise, if the histogram contrast
threshold of Ap ti + Aj j relative top is unobtainable and
the histogram contrast threshold of A'i - Aj j relative
to p is 1/2, then our data are consistent with Eqs. (44),
and we presume that the coefficients of Xi and Oj in the
synthesis of fs have opposite signs.

The third possibility is that neither of these two em-
pirical outcomes is observed. In this case we must
conclude that S is not perceptually elementary, thus
providing a strong test of our theoretical framework.

E. What to Do When a Histogram Contrast Threshold
is Empirically Unobtainable: The Method of Titration
Of course, it may well turn out that many of the his-
togram contrast thresholds Ai are not empirically obtain-
able. That is, no boundary emerges between textures
Ip+Ai¢, and Ip-Aoia even when Ai is as large as we can
make it under the constraint that p - Aiqi and p + Ai i
be probability distributions. We cannot necessarily con-
clude from this fact that Xi contributes nothing to fs; all
that we know is that the amplitude of hi in fs is smaller
than can be directly measured relative to p. In this sec-
tion we describe a method whereby we can determine

i fs without directly measuring the histogram contrast
threshold of Xi relative to p, thus increasing the sensitiv-
ity of the psychophysical methodology.

Note first that, whenever we can find two IID textures
Iq and Ir that can be distinguished (here q and r are the
texel distributions of the two textures), then there is at
least one threshold that we can empirically measure. In
particular, we know that we can obtain the histogram
contrast threshold of b relative to p for p = (q + r)/2
and 0 = (q - r)/2, because

Chubb et al.
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We can, moreover, orthogonalize our other basis ele-
ments with respect to 0 in order to be able to include b
in our basis.

Thus, if there exists a pair of IID textures that seg-
regate, then we can construct an orthogonal basis that
contains an element for which the histogram contrast
threshold can be obtained relative to some distribution
p. Throughout the rest of this section, all histogram con-
trast thresholds mentioned should be understood as being
relative to a given such distribution p. As we shall see,
for any other element p of this basis (other than the el-
ement whose histogram contrast threshold is assumed
to exist), if the histogram contrast threshold of p relative
top cannot be obtained then we can titrate with p in or-
der to determine p - fs. An important implication of this
fact is that, whenever any distinctions at all can be drawn
between elements of some space of IID textures, the psy-
chophysical tools exist to allow us to determine whether
that space of textures is perceptually elementary and, if
so, to measure the characteristic function of that space.

y intercept the titration line relating p to 0. Note that
these two lines have the same slope and also that, for xo
the x intercept of the titration line, -xo is the x intercept
of the other line. For either line,

Ifs PI = (P)/IxoI. (51)

Thus

1.
as is

2.
signs

Ifs P I is inversely proportional to Ixo 1. Moreover,
clear from Eq. (49),
The slope of the titration line is negative iff the
of fs - p and fs 0 are equal.

We can estimate the titration line by varying y around
AO and obtaining, in each case, the value of x for which
the probability of discriminating the textures p+(xp+yo)
and Ip-(xp+yk) is at threshold. By fitting a straight line
through the data we can thus estimate the sign and mag-
nitude of fs - p relative to fs X

1. Titration Lines
Let p be another basis element (aside from the element
(P whose histogram contrast threshold we assume exists
relative to p) for which the histogram contrast threshold
is empirically unobtainable. Suppose, moreover, for real
numbers x and y, that xp + yb is a reversible modulator
of p and that A is the histogram contrast threshold of
xp + y relative top. Then from Eq. (38) we derive the
fact that

Ifs (xp + y)l = A 1P(p) (46)

for T( p) defined by Eq. (39). Thus

fs (xp + yb) = A-T(p), (47)

from which we infer that

±AP(p) - fs px (48)

Empirical Significance of Eq. (48). Let AO be the his-
togram contrast threshold of q$ (empirically obtainable
by assumption). Although we cannot obtain the thresh-
old of p, we can obtain a nonempty set of real-number
pairs (x, y) such that the histogram contrast threshold of
xp + y is 1 [this sets A = 1 in Eq. (48)]. (In particu-
lar, we know that this is true for x = 0 and y = A.)
Equation (48) shows that this set of pairs (x, y) is the
union of two parallel straight lines:

y = (p) - f pX

-P(p) - fsPX (50)
fs 0

One of these lines has a positive y intercept, and the other
has a negative y intercept (which one is which depends
on the sign of fs ). We call the line with the positive

2. Three-Point Estimation of the Titration Line
In practice it is convenient to obtain three points on the
titration line relating p to b. One of these points is, of
course, the point (0, At6).

The other two points require explanation. For nota-
tional simplicity we assume that p and are maximal
relative to p (see definition 2.A.8.2). The histogram con-
trast threshold of p is not empirically obtainable. Thus
the textures Ip+, and Ip-p segregate (if at all) with sub-
threshold probability. On the other hand, the textures
Ip+J and Ip-_ segregate with suprathreshold probability.

For any proportion , we can generate the IID texture
Ip+Tp+(-T)o by simply taking a random mixture of Ip+d.
and Ip+,, where, for any texel r,

JIp+ (r) with probability r
Ip+ (r) otherwise * (52)

A similar procedure produces the IID texture
'p-(7p+(r). For XT = 0 the textures Ip+rp+(l--T)d
and Ip_(7p+(_7r)0) segregate with suprathreshold prob-
ability. For r = 1 these textures segregate with
subthreshold probability. We infer that for some pro-
portion r+ (which can be obtained with a staircase
procedure) Ip+,r+p+(--r+,)d segregates from p-(r'p+(1--+)0)
with threshold probability. Thus the point (r+, 1 - r+)
is on the titration line relating p to 0.

By an analogous procedure we can obtain the pro-
portion z- for which the IID textures p+ r-P-(-)0
and 'p-(p-(1_r)) segregate with threshold probability.
This procedure yields a third point (-7r-, 1 - r-) on the
titration line.

Thus we obtain three points (which are well spread in
most practical cases) on the titration line relating p to :
(-r-, 1 - r-), (0, A.), and (, 1 - r+).

This three-point method is illustrated graphically in
Fig. 4. Here and p are maximal reversible modulators
of a distribution p defined on Qi. Suppose that A, the
histogram contrast threshold of relative to p, is em-
pirically obtainable, whereas the histogram contrast
threshold of p relative to p cannot be measured. Points
in the plane of Fig. 4 correspond to IID texture discrimi-
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'to. 
i. Fitted Line

E

0

III) texture pairs that are generated by mixing two maximal
modulators 0 and p of the base distribution p. A point (x, y)
in this plane corresponds to the discrimination of Ip+xp+y,6
from Ip_,,p_y If the measure used by the subject for this
space of textures is one dimensional, then the locus of points
corresponding to a given performance level is a straight line.
The point (. A+) corresponds to a direct measurement of the
histogram contrast threshold of .0. Here Ap is not directly
measurable. Instead, we perform experiments along the two
indicated 45-deg lines, which correspond to a mixing of 0 with
±p to determine the proportions 1T+ and 7r- of ±p that must
be mixed with 0 for threshold performance to be achieved. A
line fitted through these three empirically measured points is
then extrapolated to its x intercept. The absolute value of the
x intercept is an estimate of Ap. A negative titration-line slope
indicates that Ax and Ap have the same sign, and a positive
slope indicates opposite signs.

nation stimuli in which the two textures to be discrimi-
nated are Ip+xp+y¢6 and Ip_(xp~yO), for x ranging from -1
to 1 along the horizontal axis and for y ranging from 0
to 1 along the vertical axis. Thus the point (0, AO) cor-
responds to the texture pair (Ip+A,,, Ip-AS 0P)- Of course,
this pair of textures segregates with threshold proba-
bility, and thus, as we have noted, the point (0, AO) is
on the titration line relating p to 0. The point (0, 1)
corresponds to the pair of textures (Ip+,O, Ip_,0), which
segregate with suprathreshold probability. The point
(1, 0) corresponds to the pair of textures (Ip~p, Ip-p),
which segregate (if at all) with subthreshold probability.
The line between (1, 0) and (0, 1) is the locus of points cor-
responding to texture pairs [Ip+,rp+(l -,),6 1 p-('rp+(1-))1

where 0 c vr c 1. Thus we can use a staircase pro-
cedure to adjust t from trial to trial, thereby moving
back and forth along the line from (1, 0) to (0, 1) in or-
der to find the point [iT+, (1 - vr+)] corresponding to the
pair [Ip+,,+p+(-7T+)(k, Ip-(,,+p+(,-,r+)5] of textures that seg-
regate with threshold probability. This is the second of
our three points on the titration line relating p to A. The
third point (-v7-, 1 - 7r-) is obtained in similar fashion
by use of a staircase procedure to move back and forth
from trial to trial along the line between (-I, 0) and (0, 1),
which is the locus of all points (- vr, I - gr) corresponding
to pairs of stimuli [Ip+7rp_(1_7r)O, Ip_(7rp_(1-)O)]

We proceed to obtain the best-fitting straight line
through points (vr+, 1 - ir+), (AO, 0), and (-or-, 1 - vr-).
The absolute value of the x intercept of this line is in-
versely proportional to Ifs - p l, and the sign of the slope
of this line is negative iff the relative signs offAs - p and
fS- 0 are equal.

Finally, note that, if the obtained data do not conform
(within measurement error) to a straight line, then we
must conclude that the space S of the III) textures that
we have been exploring is not perceptually elementary.
Thus here again we obtain a powerful test of our model.
Indeed, the method of titration frequently provides a

variety of tests of the hypothesis that S is perceptually ele-
mentary. For instance, if the histogram contrast thresh-
olds of multiple basis functions, e.g., /1 and qS2, can be
empirically measured, then for any basis function p whose
histogram contrast threshold cannot be measured the two
titration lines relating p to 01 and to 02 can be obtained.
These two lines provide independent estimates of fs p.
If these estimates diverge significantly, then we must re-
ject the hypothesis that S is perceptually elementary.

F. Summary
Thus far,

1. We have presented an argument to show that the
method of increment thresholds is insufficient to allow
psychophysicists to determine the internal codes of physi-
cal stimuli for perceptual systems.

2. We have described histogram contrast analysis.
This is a new psychophysical method that can be used
to infer the internal codes assigned to the members of
a set Q of micropatterns (e.g., to small square patches
of various gray levels) by processes that draw perceptual
distinctions between IID textures of fQ. Histogram con-
trast analysis involves a collection of related tools. The
tools that we have described are

a. Histogram contrast thresholds (Subsection 2.C).
These are the principal tools of histogram contrast analy-
sis. For fl a set of micropatterns, and S a space of IID
textures of fQ, suppose that the visual system draws pre-
attentive distinctions between certain textures in S. It
was shown that, if the set S is perceptually elementary
(i.e., if there exists a single function fs that characterizes
the effective internal code applied to fl by the mecha-
nism that draws these distinctions), then the histogram
contrast threshold of a given real-valued function 0 of fl
is inversely proportional to Io fs I (the absolute value of
the cross correlation of 0 with fs).

b. Cancellation tests (Subsection 2.D). If one can
obtain histogram contrast thresholds AO and A, of two
different functions 0 and p, then a method is available
for determining the relative signs of fs and fs p;
this method simultaneously provides a strong empirical
test of the assumption that S is perceptually elementary.
Specifically, for /+ = A+0 + App and (3 = A b - App,
if S is perceptually elementary then for A 3+ and Ap-,
the histogram contrast thresholds of /+ and 83, either
(1) AO+ = 0.5 and Ap- is empirically unobtainable or
(2) A13- = 0.5 and An+ is empirically unobtainable. If
alternative (1) holds, then fS - S and fS - p have the same
sign. If alternative (2) holds, then fS s and fS p have
opposite signs. If neither alternative holds, we conclude
that S is not perceptually elementary.

c. The method of titration (Subsection 2.E). It may
well turn out that the histogram contrast threshold of a
given function cannot be obtained directly. However, if
any preattentive distinctions at all can be drawn between
IID textures in S, then there always exists a distribution
p relative to which one can measure the histogram con-
trast threshold of some modulator 0, thus obtaining an
estimate of Ifs - /1. For any other modulator p of p, or-
thogonal to X, one can determine the ratio of fs - p to
fs - 0 by seeing how much q5 is needed to compensate for
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a small quantity of p near threshold. The three-point
method elaborated in Subsection 2.E.2 is a precise recipe
for determining the ratio of fs p to fs 40. In addition,
the method of titration also provides a strong test of the
hypothesis that S is perceptually elementary. If S is per-
ceptually elementary, then the amount of c/ required for
sustaining a fixed level of performance as p is varied by
amount 8p must be a linear function of 8p. Any devia-
tion of titration data from this predicted linear rela-
tionship forces the conclusion that S is not perceptually
elementary.

d. fs synthesis. If the data support the hypothesis
that S is perceptually elementary, then one can use either
histogram contrast thresholds or the method of titration
to obtain fs . i for each element i of a suitable set
of orthogonal functions. One can then compose fs as a
linear combination of the functions c/i.

3. USE OF HISTOGRAM CONTRAST
ANALYSIS TO STUDY SPATIALLY
LOCAL VISUAL NONLINEARITIES

In this section we describe experiments that apply his-
togram contrast analysis to IID textures of the set of
0.13-deg squares of intensities 4.4i cd/mi2 , i = 0, ... , 16
(e.g., those illustrated in Figs. 1 and 3). For convenience
we identify the micropatterns of F with their respective
gray levels and write i for the gray level 4.4i cd/M2 . We
begin by situating these experiments in the context of cur-
rent models of texture perception.

A. Back-Pocket Model of Texture Segregation
Applied to LID Textures of r
As we mentioned above, most models of texture segre-
gation (e.g., Refs. 8-16; see also Refs. 17 and 18) suppose
that the visual system is equipped with a variety of linear
filters (realized by arrays of linear neurons with differ-
ent receptive-field profiles). A given filter will respond
differently to different textures; that is, the histogram of
values in the neural image resulting from the application
of a given filter will vary systematically across different
classes of textures. Such histogram differences can be
converted to differences in spatial average value by ap-
plication of one or another pointwise nonlinearity to filter
outputs. This is the basis of the back-pocket model of
texture perception.

In Subsection 1.D it was mentioned that IID tex-
tures with equal mean and variance [such as those of
Figs. (g)-1(j)] cannot be segmented by a back-pocket
model channel that has a sufficiently large receptive
field. As a result, in Section 2 we restricted our atten-
tion to the far simpler model of Fig. 2(b), which omits the
initial spatial filter. Here we elaborate on this observa-
tion and point out that the performance of back-pocket
model channels with sufficiently small receptive fields is
similar to that of the model shown in Fig. 2(b), so that
histogram contrast analysis still applies.

Consider what happens when we apply a linear filter
F* with a large impulse response to an IID texture, I,
of r. Specifically, suppose that the impulse response F
encompasses a number of different texels in Ip. Since
the gray levels of the texels of Ip are jointly independent

random variables, and the value produced at any point
in space is a linear combination of those gray levels,
the central limit theorem implies that the value at any
point in the neural array embodying the output image
must be (approximately) normally distributed. Thus the
histogram of the neural image F * I, will have a Gaussian
profile.

This point is illustrated in Fig. 5. In Fig. 5(a) is shown
an IID texture I, of F. The texel distribution p charac-
terizing Ip is shown inset within this patch of Ip. This

(a)

(b)

(c)
Fig. 5. Back-pocket model and IID textures. (a) An IID tex-
ture I, and its gray-level histogram, (b) the impulse response
of a typical linear filter used in the modeling of early vision, (c)
the resulting filtered texture and its intensity histogram. Note
that the filtered texture-intensity histogram is approximately
Gaussian and thus is determined only by the mean and the
variance of Ip (and by the characteristics of the filter).
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distribution p gives high probabilities to extreme light
and dark intensities. Consequently, Ip appears high in
contrast. Figure 5(b) shows the impulse response of a
garden-variety, oriented linear filter F*, and Fig. 5(c)
shows the texture that results from application of F* to
Ip. The important point to note here is that the gray-
level histogram of F * , [shown inset within Fig. 5(c)]
is Gaussian. It does not matter what sort of texel dis-
tribution p is used to generate the initial IID texture Ip.
The output image will always have a Gaussian gray-level
histogram.

Note, however, that (1) the normal distribution is char-
acterized completely by its mean and its variance and (2)
the mean and the variance of a linear combination of ran-
dom variables depend only on the means and variances
of the random variables being combined and the weights
used in the linear combination. Thus, for any IID tex-
tures Ip and Iq, if gray-level distributions p and q have
the same mean and variance, then application of F* to Ip
and I, will obliterate the difference between them. To
be precise, it can be shown that the pixels of the output
image F * Ip will be jointly normal with a covariance ma-
trix approximately equal to that of the (jointly normal)
output image F * I.

Now, the IID textures IU+Aa and IU-A, of Figs§ 1(g) and
1(h) [the same is true for the textures IU+A4 and IU-A4,

Figs. 1(i) and 1(j)] do, in fact, have gray-level distribu-
tions with equal mean and variance (a statement dis-
cussed further below and justified in Appendix A). There
is, nonetheless, a perceptual boundary between them.

The above argument rules out the possibility that this
boundary is being produced by any back-pocket model
channel that uses an up-front linear filter with a recep-
tive field that pools over a sufficient number of texels.
Thus the only back-pocket model channels whose output
is relevant to the distinction that we see drawn here are
those whose up-front linear filters are calibrated to pre-
serve the relative values of individual texels. The best
filter for this purpose would be no filter at all: i.e., the
identity filter. This is the case illustrated in Fig. 2(b).
However, many models assume that all the filters are spa-
tial frequency specific, either low pass or band pass. In
this case the optimal filter for preserving the relative val-
ues of individual texels is that filter whose output value at
a given texel is dominated most thoroughly by the value
of that particular texel.

Consider, for instance, a filter whose receptive field has
an excitatory center the same size as a single micropat-
tern of F and an inhibitory surround that encompasses a
region the size of a 3 X 3 block of texels. In this case a
cell whose receptive field is centered on a given texel r of
an IID texture of r has a surround that takes the aver-
age of the eight texels forming a ring around r. Figure 6
illustrates the effect of application of such a filter to a
stimulus [Fig. 6(a)] composed of a patch of IU-A3 (at the
left) abutting a patch of IU+A3 (at the right). The his-
tograms enclosed within patches of texture in Figs. 6(a)
and 6(c) are all actual image intensity histograms, not
texel distributions. (Of course, the texel histograms of
the patches of IU-Ak and Iu+A3 closely resemble the prob-
ability distributions U - A3 and U + A3, respectively.)
Convolution of this input stimulus with the receptive field
shown in Fig. 6(b) yields the (neural) output image shown

in Fig. 6(c). Although the histograms of the filtered tex-
tures in Fig. 6(c) at the left and at the right appear simi-
lar (both seem to be roughly normal), these histograms
are systematically different, as we see in Figs. 6(d)-6(f).
Figures 6(d) and 6(e) are the histograms of the left and
right patches of filtered texture, respectively, and Fig. 6(f)
displays the difference between these two histograms.
The important point to note is that the form of the modu-
lator A3 is preserved quite well in the difference between
the histograms of the filtered textures.

Thus we see that the particular isotropic bandpass filter
whose receptive field is shown in Fig. 6(b) does a good job
of preserving the histogram information in the original
IID texture to which it is applied.

The precise characteristics of the up-front filters used
to distinguish between IU+A3 and IU-A3 are unimportant.
What matters is that there evidently exists at least one
up-front linear transformation that does, in fact, preserve
the information (carried in the histograms) about the
relative frequencies of different gray levels in the two
textures. If indeed there is such a unique filter (or a
set of such filters with highly correlated outputs), then
the distinction drawn between IU+A3 and 1U-A 3 (as well
as between IU+A4 and IU-A4 ) depends only on the point-
wise nonlinearity that is presumed to follow this up-front
linear filter. And in this case we can use histogram con-
trast analysis to characterize this nonlinearity partially.
Specifically, for S, the space of all IID textures of F with
mean and variance equal to IU, we can apply histogram
contrast analysis to measure the characteristic function
fs. If, indeed, discrimination between textures in S
depends on a single back-pocket model channel with
pointwise nonlinearity f, then fs will be identical to that
portion of f that is relevant to drawing distinctions in S.

For measurement of fs, a set of reversible modula-
tors is needed that form an orthogonal basis set and
that have the additional characteristic of having equal
mean and variance. To generate a suitable basis set,
we started with the discrete-domain monomials fi(v) =
vi, i = 0, 1, ... , 16, which form a basis set but are not mu-
tually orthogonal. Then we performed Gram-Schmidt
orthogonalization on the fi (see, e.g., Ref. 21). We ob-
tained the modulators AO, Al, ... , A16 by scaling the re-
sulting polynomials to be maximal reversible modulators
of U, the uniform distribution on F. Each modulator Ai
is a discrete-domain polynomial of degree i. (The set
Ai, i = 0, 1, ... , 16 of polynomials is a discrete-domain
analog of the Legendre polynomials.22 ) These are the Ai
shown in Fig. 1.

The functions A3 , A4, ... , A16 are orthogonal. More-
over, each of these functions is orthogonal to ;0, ;1, and
{2, where, for v = 0, 1, ... , 16,

~O(V) = 1,

(V) = V,

{2(V) = V2. (53)

Let h be any modulator of U produced by taking
a linear combination of the higher-order polynomi-
als, A3 , A4 , ... , A16 . Because A3 , A4 , ... , A16 are all
orthogonal to each of ;i and {2, h must also be orthogo-
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(d)

(a)

E]
(b)

(e)

(c) (f)
Fig. 6. Spatial filtering that preserves information about the moments of IID texture histograms other than mean and variance. (a)
Patches of IID texture IU-A3 and IU+A3. The bar graphs enclosed within the patches of texture are the intensity histograms of the
patches. These histograms approximate the texel distributions U - A3 and U + A3 (which have equal mean and variance). (b) The
receptive field F of a linear filter capable of preserving information about the higher moments (other than mean and variance) of the
histograms of ID textures of . This receptive field has an excitatory center exactly the size of a micropattern of and an annular
inhibitory surround covering a region equal in size to the ring of texels surrounding a given texel. If the excitatory center of a neuron
with such a receptive field is aligned with a texel , then the output of that neuron will be dominated by the intensity of . (c) The
result of convolving the IID texture field shown in (a) with receptive field F. Enclosed bar graphs are intensity histograms of left-hand
and right-hand filtered textures, F * IU-As and F * IU+Aa. (d) The intensity histogram (enlarged) of the left-hand patch of filtered
texture, F * IU-A3 - (e) The intensity histogram (enlarged) of the right-hand patch of filtered texture, F * IU+A3. (f) The difference
between the two histograms shown in (d) and (e). Note that the form of the modulator A3 is preserved quite well in the difference
between the histograms of the filtered textures. Thus the particular isotropic bandpass filter whose receptive field is shown in (b) does
a good job of preserving the histogram information in the original IID texture to which it is applied.

nal to ;1 and 2. It follows from proposition A.1 (in
Appendix A) that a random variable with distribution
U + h has the same mean and variance as a random
variable with distribution U. This means that, by ob-
taining histogram contrast thresholds and/or using the

titration method with the modulators Ai, i = 3, 4, ... , 16,
we can completely characterize that part of the nonlin-
earity implicated by Figs. (g)-1(j) that is relevant to
distinguishing between IID textures with equal mean
and variance.

-- 
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B. Experiments to Measure Histogram
Contrast Thresholds

1. Procedure

In our experiments the subject was required to judge, in
a 250-ms display, the orientation of a square-wave grat-
ing (0.26 cycles/deg at a viewing distance of 1 m) that
modulated between a texture pair for which we wanted
to measure the histogram contrast threshold. The com-
plete display subtended 13 deg, and the texels in these
displays (4 x 4 pixels on our display device) had a width of
0.13 deg. Thus there were approximately 8 texels/deg,
each bar of the square wave had a width of 20 texels,
and the total display was 100 texels wide. We random-
ized the phase of the square wave to thwart any attempt
by the subject to attend only to a location at which a tex-
ture boundary had appeared in the past.

The display device was a BARCO Calibrator moni-
tor driven by a Gateway 2000 486 personal computer
equipped with a Truevision ATVista board. The nature
of the experiments (manipulation of the gray-level his-
togram of an image) dictates that extreme care be taken
in calibration of the monitor. It is crucial that the func-
tion relating the luminance of the different gray levels be
linear; otherwise unwanted distortions will be imposed on
our histograms. Our procedure was to linearize each gun
of our monitor separately, by eye. We created a pattern
similar in pixel structure (4 x 4 pixel squares) to that
of the experimental images. The pattern consisted of a
central area and a small surround. Half of the pixels in
the central patch were gray and of mean luminance. The
other half were split evenly between pixels of two other
gray levels, and they swapped locations rapidly and ran-
domly. Half of the surround pixels were also gray and of
mean luminance. The other half were made up of a third
type of pixel, the intensity of which was carefully adjusted
so that when these pixels were blurred the surround was
indiscriminable from the central region. The central and
the surrounding regions combined used only a small area
at the center of the monitor; the rest of the monitor was
maintained at the same mean luminance. In this man-
ner, adjusting a surround so that after a blur it looked
the same as an interior that flickered between two gray
levels, we could find the midpoint between any two gray
levels. We assigned values to each of the 17 gray levels
by finding the midpoint between the widest interval avail-
able (e.g., gray level 7 is assigned to the midpoint of gray
levels 0 and 14, not 6 and 8). Combining the three guns
does not appear to compromise the linearity.2 3 One rea-
son that we chose texels to be 4 x 4 pixel squares was
to minimize the influence of each texel on the luminance
of its neighbors.2 4 The resulting mean luminance was
35.5 cd/m2 (corresponding to gray level 8) with steps of
4.4 cd/M2 between successive gray levels.

The experiments described in this section measured the
histogram contrast threshold Ai relative to U for each Ai
in our sequence for which this was possible. That is,
we found the amplitude Ai for which IU+AiAi was just
barely discriminable from IU-AiAi for each i = 3, 4, ... , 16
for which such an Ai existed. Examples of stimulus
frames are shown in Fig. 7. Figure 7(a) shows a ver-
tical square wave modulating between IU+A3 and IU-A3

Figure 7(b) shows a horizontal square wave modulat-
ing between IU+4 and 1 uA4, The black borders of the
frames were not present when they were displayed in the
experiment; instead, stimulus frames were displayed in
the middle of a uniform field of luminance equal to the
mean luminance of the textures. Before stimulus onset,
the screen was uniform midgray except for a small, low-
contrast cue spot.

Subjects viewed several hundred such textures in a
single block of trials. In a given block the subject at-
tempted to distinguish the orientations of square waves

r -� r. �>w�v� � �a<

i 2, I bI L

(a)
(a)

(b)
Fig. 7. Example stimuli: (a) a vertical IID texture square
wave modulating between IU+A3 and IU-A3 , (b) a horizontal
IID texture square wave modulating between IU+A4 and IU-A4 -
The black border was not present in the experiments; rather,
the stimulus was surrounded by a gray field with the same
luminance as the mean luminance of the textures.

4
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Table 1. Histogram Contrast Thresholds for Subject JE
Experimental Data Results from Simulationsa

Modulator Threshold A Trials Bias Standard Deviation Confidence Interval

A3 0.214 1376 0.0000 0.008 0.198-0.228
A4 0.319 1434 0.0005 0.012 0.293-0.342
A5 0.445 1494 -0.0003 0.018 0.406-0.478
A6 b 1383 -
A7 b 452

aSimulation results are taken from 1000 simulated experiments.
Threshold performance was not attainable within the range of histogram contrasts available.

Table 2. Histogram Contrast Thresholds for Subject CC
Experimental Data Results from Simulationsa

Modulator Threshold A Trials Bias Standard Deviation Confidence Interval

A3 0.257 1142 -0.0001 0.010 0.236-0.276
A4 0.367 1084 -0.0001 0.012 0.341-0.390
A5 0.538 927 -0.0004 0.020 0.497-0.574
A6 b 506 -
A7 b 579

'Simulation results are taken from 1000 simulated experiments.
Threshold performance was not attainable within the range of histogram contrasts available.

modulating between IU+AAi and IU-AAi for all the different
distribution modulators Ai. It was critical to mix all con-
ditions in each block of trials because, if the subject were
required to distinguish only one sort of IID texture IU+AAi
from its dual IU-AAi in a given block, the subject might be
able to adjust his or her texture measure T to optimize
performance on the particular task posed in that block of
trials. In this case we would not be learning about the
differential sensitivity of a single texture measure that
was constant across the set of all distribution modulators
Ai, i = 3, 4, ... , 16.

The paradigm was two-alternative forced choice with
a staircase used to place trials. Feedback was provided
after each trial. The trials for a given pair of textures
IU+AAi and IU-AAi resulted in a psychometric function (per-
cent correct as a function of the histogram modulation
amplitude A). These functions were fitted with a cu-
mulative Weibull distribution with use of a maximum-
likelihood estimator, and the point at which this function
was equal to 75% correct was taken to be the histogram
contrast threshold.

The reliability of our psychometric function parameters
was determined by use of a variation on Efron's boot-
strap method as described by Maloney.2 5 This procedure
simulates data for 1000 experiments by sampling a bi-
nomial distribution for each value of the independent
variable for which trials were run. The value of the psy-
chometric function at that point was used as the proba-
bility (the parameter p) of the binomial distribution, and
the number of trials run at that point was used as the
other parameter (N) of the binomial distribution. 1000
psychometric functions were fitted to the 1000 sets of
simulated data, and the 1000 sets of parameters of these
psychometric functions were used to determine the vari-
ability of the original parameters.

2. Results
Using this setup, we ran interleaved staircases to obtain
histogram contrast thresholds for each of A3 , A4 , A5, A6,
and A7. We had previously observed that the higher-
order histogram contrast thresholds Ai, i = 8, 9, ... , 16
were not empirically obtainable. For this reason we did
not attempt to measure these thresholds in the current
study.

There were two subjects, authors John Econopouly (JE)
and Charles Chubb (CC). JE was extremely well prac-
ticed at the task, and CC was moderately well practiced
before data collection began.

Of the five histogram contrast thresholds that were
measured, the three low-order thresholds were easily ob-
tainable, but the thresholds for A6 and A7 were not. The
thresholds obtained are shown in Tables 1 and 2 for sub-
jects JE and CC, respectively. Also shown are estimates
of the bias, the standard deviation, and the 95% nonpara-
metric confidence interval for each threshold obtained.
These were calculated from 1000 simulated experiments,
obtained from the bootstrap method described above.

Parenthetically, we observed that these values were
significantly lower if in a given block of trials the subject
was required to distinguish only one sort of IID texture
IU+AAi from its dual IU-AAi (i.e., i was kept fixed). This
suggests that the subject can partially adjust the differ-
ential sensitivity of the relevant texture measure T to the
micropatterns of in order to optimize performance on
a given discrimination task. These trials were not in-
cluded in our analysis.

In summary, we were able to measure directly three
histogram contrast thresholds for each of two subjects.
From Eq. (38) it follows that, if S is perceptually ele-
mentary with characteristic function fs, then Ifs Ail is
inversely proportional to the Ai measured, for i = 3, 4, 5.
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However, we still do not know (1) whether S is perceptu-
ally elementary, (2) the relative signs of the dot products
fs Ai, i = 3, 4, 5, or (3) the contributions to f of basis
elements Ai for i > 5. We can, however, use the titra-
tion method discussed in Subsection 2.E to settle all
these issues.

C. Experiments Involving Titrations

1. Procedure
For texture pairs IU+AAi and IU-AAi for which we were
unable to achieve threshold performance within the range
of histogram contrast available (i.e., within the range
0 ' A ' 1), we titrated each of the textures IU+A, and
IU-Ai with one of the textures IU+Aj for which threshold
performance was attainable. This produced two pairs
of textures, each of which is presented in a square-wave
modulated display, in a manner completely analogous to
the procedure detailed above for measuring histogram
contrast thresholds directly. The only difference is that
now instead of the modulation amplitude we are measur-
ing the proportions r-ij and 7rij of each of IU-Ai and
IU+Ai that we have to mix in randomly with IU+Aj
to achieve threshold performance. In other words,
we created stimuli that alternated between textures
IU-r-ijAi+(1-7T-ij)Aj and IU+7r-iji-(1-,_ii)Aj to find the
proportion iT-ij that yielded threshold performance;
similarly, we used stimuli that alternated between
textures U+irijAi+(1-irij)Aj and IU-,rTiAi-(1-ij)Aj to find
the proportion 7Tij that yielded threshold performance
(Subsection 2.E.2).

The paradigm is again two-alternative forced choice,
with a staircase used to place trials. The trials for a
given titration result in a psychometric function (per-
cent correct as a function of the proportion n-). These
functions were fitted with a cumulative Weibull distribu-
tion with use of a maximum-likelihood estimator, and the
point at which this function was equal to 75% correct was
taken to be the histogram contrast threshold.

Each titration procedure has three data points associ-
ated with it: the simple histogram contrast threshold Aj
and the proportions 7r-ij and rij. These are plotted at
(-r-ij, 1 - 7T-ij), (0, Aj) and (ij, 1 - vij), as shown in
Fig. 4. The variabilities of the estimates of 7rij and 7T-ij
are determined by use of exactly the same bootstrap proce-
dure as is described in Subsection 3.B.1. A titration line
is fitted to these three points by use of a weighted least-
squared-error fit, so that we can determine whether the
points are well modeled by a straight line and, if so, what
the x intercept of that line is. The error of each data
point is taken to be its distance from the titration line
along the line where it could occur [i.e., diagonal distance
for (-7T-ij, 1 - 7r-ij) and (7rij, 1 - inij), vertical distance
for (0, Aj)]. These individual errors are first weighted
by the inverse standard deviations of their distributions
(since a variable data point should restrict the location of
the titration line less than a more definite point), then
squared, and finally added together to yield the total
error that is to be minimized.

The variability of the x intercept of the titration line is
determined by use of a bootstrap procedure, as well. A
simulated experiment is generated for each of the three

psychometric functions involved, and a line is fitted to
each of the three simulated thresholds by use of the
weighted least-squared-error fit described above. This is
repeated 1000 times, giving us 1000 simulated x inter-
cepts from which to compute the standard deviation.

Because we measured three histogram contrast
thresholds directly (A3, A4 , and A5 ), as described in
Subsection 3.B, we can measure three independent titra-
tion lines for each of A6 and A7 by titrating with each of
A3, A4, and A5. This provides us with three independent
estimates of fs A6 and fs A7 (each multiplied by an
unknown proportionality constant). These values enter
into Eq. (18) to determine the weights for basis set
elements A6 and A7 in the synthesis of fs. Comparison
of the three independent estimates of the two weights
will provide a measure of consistency. The directly
measured histogram contrast thresholds A3, A4 , and A5

yield estimates of Ifs - A31, IfS A41, and Ifs A51 in accor-
dance with Eq. (38) [again we ignore the proportionality
constant (U)]. The relative signs of fs - A3, fs A4

and fs A5 will be determined by the signs of the slopes
of the titration lines of A3, A4, and A5 with A6 and A7.

2. Results
We obtained estimates of A6 and A7 for the same two
subjects, using the technique of titration. We did not ob-
tain estimates of Ai for i > 7. The complete experimen-
tal results are tabulated in Tables 3 and 4, along with
the results of various estimation procedures that will be
explained as this section unfolds.

First, let us examine the results for subject JE, for
whom we measured all three possible titration lines: A6

titrated with each of A3, A4, and A5; and A7 titrated with
each of A3, A4, and A5. The results are shown graphically
in Fig. S.

These graphs deserve careful consideration. They are
meant to convey two separate points, each important to
our conclusions. First, note that each graph contains
three actual data points. In Fig. 8(a) these three points
are (1) the point obtained by titrating IU-A6 with Iu+A,
plotted at (- 6,3, 1 - 7T-6,3); (2) the point (0, A3); and (3)
the point obtained by titrating IU+A6 with IU+A3, plotted at
(VT6 ,3 , 1 - 7T6,3). Each of these points has associated with
it a 95% confidence interval, obtained by the bootstrap
procedure. A line is fitted to the three points in each
graph by a method of weighted least squares. The first
point to note is that in none of the six cases displayed
did the line fall outside the confidence intervals for the
points. In the case of the A6 titrations very many trials
were run (see Table 3), with the express purpose of get-
ting the confidence intervals very tight: the lines still fall
within the intervals. This result is consistent with the
hypothesis that the space S is perceptually elementary
(Subsection 2.8.2), suggesting that distinctions drawn be-
tween IID textures of F with equal mean and variance
are mediated by a single, additive texture measure T.

The second point is simply that the absolute values
of the three independent estimates of A6 and A7 (the x
intercepts of the extrapolated titration lines) match re-
markably well. An average of the three estimates gives
us the final estimates: 1.02 for A6 and 1.52 for A7 for
subject JE. The sign of each titration line slope tells us
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Table 3. Titrations for Subject JE
Results from Simulationsa

Experimental Dataa Standard Confidence Standard
Titrationb Modulators Threshold or Trials Bias Deviation Interval x Interceptc Deviationc pC

As with A6 A3, -A6 0.008 1533 0.0001 0.004 0.004-0.015 -1.032 0.015 0.805
A3, A6 0.346 1362 -0.0003 0.008 0.330-0.360

A4 with A6 A4, -A6 0.457 1372 -0.0002 0.008 0.440-0.471 1.029 0.012 0.136
A4, A6 0.012 1566 0.0002 0.005 0.004-0.021

A5 with A6 A5, -A6 0.008 1574 0.0016 0.008 0.000-0.027 -1.011 0.011 0.407
A5, A6 0.599 1325 -0.0004 0.011 0.577-0.619

A3 with A7 A3, -A7 0.323 291 -0.0001 0.015 0.291-0.349 1.500 0.117 0.496
A3, A7 0.088 452 0.0001 0.013 0.061-0.112

A4 with A7 A4, -A7 0.118 310 -0.0023 0.043 0.030-0.196 -1.510 0.212 0.491
A4, A7 0.426 311 -0.0010 0.013 0.394-0.448

A5 with A7 A5, -A7 0.525 336 0.0001 0.029 0.478-0.595 1.553 0.231 0.198
A5, A7 0.189 361 -0.0036 0.045 0.088-0.265

'Results for each of the component thresholds are shown in columns 3-7.
bEach titration has three thresholds associated with it, the two shown here and one each from Tables 1 and 2.
CResults of the titration lines fitted to these thresholds are shown in columns 8-10. p refers to the percentile represented by the true error of the

data points to the best-fitting titration line, compared with the errors of simulated points drawn from a linear model to their best-fitting titration lines.
1000 simulated experiments were run, each with the same number of trials as in the original experiments.

Table 4. Titrations for Subject CC
Results from Simulationsa

Experimental Dataa Standard Confidence Standard
Titrationb Modulators Threshold r Trials Bias Deviation Interval x Interceptc Deviationc pC

A3 with A6 A3, -A6 0.018 387 0.0016 0.010 0.003-0.042 -1.064 0.042 0.404
A3, A6 0.387 316 0.0002 0.012 0.362-0.411

A3 with A7 A3, -A7 0.303 165 -0.0006 0.010 0.283-0.324 1.381 0.128 0.001
A3, A7 0.054 318 0.0009 0.014 0.028-0.083

'Results for each of the component thresholds are shown in columns 3-7.
bEach titration has three thresholds associated with it, the two shown here and one each from Tables 1 and 2.
cResults of the titration lines fitted to these thresholds are shown in columns 8-10. p refers to the percentile represented by the true error of the

data points to the best-fitting titration line, compared with the errors of simulated points drawn from a linear model to their best-fitting titration lines.
1000 simulated experiments were run, each with the same number of trials as in the original experiments.

whether the thresholds for the two basis set elements
being titrated have the same sign or opposite signs. As
it turns out, A3, A5, and A7 share one sign, and A4 and
A6 share the opposite sign.

Given the close agreement of the three independent es-
timates of A6 and A7 for subject JE, we believed that
it was unnecessary to get three independent estimates
for subject CC. Instead, we chose to titrate each of
A6 and 7 with 3 alone, with the results shown in
Figs. 9(a) and 9(b). These figures are completely analo-
gous to Figs. 8(a) and 8(d), respectively. Again, note that
in Fig. 9(a) the titration line falls within the confidence
intervals of the three points. However, for the 7 titra-
tions shown in Fig. 9(b) the titration line is outside two
of the confidence intervals. The estimates of A6 and A7
from the x intercepts of the titration lines for CC are 1.06
and 1.38, respectively.

The fact that one of CC's titration lines did not fall
within the confidence intervals of all its points motivated
us to devise a more comprehensive statistic to determine
how likely it is that the data that we measured can be
modeled by a straight line. This is crucial because, if
the data cannot be modeled by a straight line, then the

space S of textures cannot be considered perceptually
elementary.

The statistic that we devised was again based on a
bootstraplike simulation. The idea is to assume that a
straight line does model the data, choose the best-fitting
straight line available (the one shown on the graphs), and
use the data points implied by that line as input to a boot-
strap procedure to generate a sequence of simulated ex-
periments. After each simulated experiment (which will
produce three simulated titration-line points), we mea-
sure the error of these points to the best-fitting straight
line, to find out how far off from straight are typical
data sets. Finally, we compare this expected error mea-
sure with the actual error in the data, that is, with the
squared deviations of the measured data points from the
line shown in the graphs.

The results of this test are shown in the final column of
Tables 3 and 4, and they confirm the impressions drawn
from simply looking at the confidence intervals. The first
seven titrations do not fail the linearity test: the total
squared error measured from the data points to the fit
line was within a 95% confidence interval of the typical
error displayed by simulated data points to a fit line after
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a straight-line model is assumed in each case. However,
the final titration, A7 with A3 for subject CC, fails this test:
it is extremely unlikely (p < 0.001) that these data came
from a straight line. This means that for CC we must
reject the hypothesis that the space S of textures with
mean and variance equal to Iu is perceptually elemen-
tary. This finding suggests that more than a single tex-
ture measure is relevant to the distinctions drawn by CC
between textures in S. However, it should be noted that,
although the deviation from linearity of CC's data is sta-
tistically significant, it is nonetheless a small effect. It
is likely that CC's performance on these segregation tasks
is determined for the most part by the single texture mea-
sure whose characteristic function we shall construct.

D. Constructing fs
Since we have determined that the space S of textures is
perceptually elementary for subject JE and approximately
so for CC, we can now synthesize the characteristic func-
tion fs for each subject by setting

fs=E Ai Ai (54)

The sign of fs A3 was arbitrarily chosen to be positive,
and the signs of fs - Ai, i = 4, 5, 6, 7 were determined

0

ci)
-o

_0

CL 0
E 

q
0

by the results of the titration experiments. Specifically,
assuming (arbitrarily) that fs A3 is positive, the signs of
the slopes of the titration lines measured for JE dictate
that fs A5 and fs A7 are also positive, whereas fS A4
and fs A6 are negative. For subject CC we had to as-
sume that the relative signs of fS A3, fs A4 and fs A5
were the same as for subject JE, since not all the titra-
tions required for determining those signs were run for
CC. This assumption is consistent with the signs of the
two titrations that were run for CC. Because of the great
amount of time required for each titration, and since the
higher-order basis elements appear to contribute least to
the nonlinearity, we chose not to measure the contribu-
tions of the elements higher than A7.

Figures 10(a) and 10(b) show the reconstructions of fS
for subjects JE and CC, respectively.

E. Discussion
The results of this experiment demonstrate first that S
is perceptually elementary. This implies that discrimi-
nations within S are mediated exclusively by a single tex-
ture measure T, additive with respect to r. Because S
turns out to be perceptually elementary, the methods of
histogram contrast analysis yield a characteristic func-
tion fS (Fig. 10). (fs is defined only up to arbitrary ad-
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Fig. 8. Titration results for subject JE. Panels correspond to different titrations of each of A3, A4, and A5 with each of A6 and A7.
The number of trials per point and other statistics of interest are tabulated in Table 3. Intervals around the data points are 95%
nonparametric confidence intervals. A more comprehensive statistic, p, refers to the ability of a straight line to model the data as a
whole. The intervals around the x intercepts are standard deviations. (See text for details.)
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Fig. 9. Titration results for subject CC.

ization of the nonlinear function that is applied to the
CC output of T's linear filter.

An alternative possibility is that fS is a partial charac-
terization of an early pointwise nonlinearity, a nonlinear-
ity that exists before any filtering of the sort performed
by back-pocket model channels. The following argument

\ As makes this unlikely, however. Suppose that image in-
0.5 1.0 1.5 tensity at each point were transformed by some function

g: D1R - R at a stage of visual processing before the linear
filters of the back-pocket model. Suppose, moreover, that
g = h + fs, for some quadratic function h(v) = AV2 + Bv.
In this case consider what happens when we submit to

CC the visual system a stimulus J composed of IID textures
'u+0 and 1 u_ with equal gray-level means and variances.
The function g is applied point by point to J, yielding
a neural output image g o J composed of IID textures
g o Iu+6 and g o Iu-. Because Iu+k and I- have
equal gray-level means and variances, h- 0 = 0 (this is
a consequence of proposition A.1 below). Note then that

U. I.u I.3

E[g Iu+, = (h + fs) (U + ) = (h + fs) U
Format as in Fig. 8.

E[g Iu-0] = (h + fs) (U -) = (h + fs) U
ditive and multiplicative constants; see the definition in
Subsection 2.D.) What is the relation between fs, the pe-
culiar seventh-order polynomial shown in Fig. 10, and T?
For dT, the function reflecting the differential sensitivity
of T to the micropatterns of F, fs is the projection of dT
into the space of functions spanned by orthogonal poly-
nomials A3, A4, ... , A7. Thus f does not tell us every-
thing about d. In particular, fs does not give us any
indication about whether the measure T can detect dif-
ferences in gray-level mean between textures. Neither
does fs give us any indication as to whether T is sen-
sitive to differences in the gray-level variance between
textures. fs can tell us nothing about these aspects of
T's discriminating capabilities because all the textures in
the space S have the same gray-level mean and variance.
It may well be that T is sensitive to differences in gray-
level mean and variance between textures. If we knew
these sensitivities, we could add appropriate linear and
quadratic terms to fS to obtain a function that more fully
characterized dT.

We cannot measure the sensitivities of T to intertextu-
ral differences in gray-level mean and variance because
other measures aside from T are also sensitive to such
differences in gray-level mean and variance. This fact
was established by pilot studies performed before the in-
vestigations reported in this paper. These pilot studies
indicate that the space of all IID textures of (not just the
subset of this space for which mean and variance equal
those of Iu) is not perceptually elementary. Specifically,
the cancellation tests discussed in Subsection 2.D failed
(1) between Al and all of A2, A3, and A4, and (2) between
A2 and both of A and A4.

How does the function fs fit into the back-pocket model
of texture segregation (Subsection D)? We presume
that the unique measure T relevant to the discrimination
of textures of S is a single back-pocket channel whose
linear filter is well suited to preserving the histogram
differences between textures of S (such as that shown in
Fig. 6). In this case fs emerges as a partial character-

0 -

M 0-
C:

0 0
:5

0

0~

I? -

-
C

c0

0
cm .

+ fs ,
(55)

- fs '-.
(56)

0 20 40 60
Luminance cd/M2

(a)

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 20 40 60
Luminance cd/M2

(b)
Fig. 10. Reconstructions of fs for subjects (a) JE and (b) CC.
These reconstructions include neither of components A and A2;
these components cannot be measured by use of IID textures with
equal mean and variance because measurement for such textures
is no longer one dimensional (that is, the space of all IID textures
is not perceptually elementary).
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Thus, if fs k 0, then the neural IID textures g o I+
and g I-p have different means. If g is the standard
compressive nonlinearity sometimes asserted to modify
the coding of light intensity early in the train of visual
processing, then the polynomial expansion of g will cer-
tainly have substantial first- and second-order terms; that
is, g will correlate significantly with both the linear mod-
ulator A1 and the quadratic modulator A2. Thus, if the
difference in the means of g o Iu±+ and g o Iu- is
the source of our ability to distinguish the textures Iu++
and Iu, then we should be able to cancel the effect of
modulation by 0 with a countermodulation by either A1
or A2. That is, for some amplitude C we should find that

IU,+CA1 is indiscriminable from IU-(#,+CA1 ). And simi-
larly, for some amplitude D we should find that IU+O+DA2

is indiscriminable from U-(+DA2). However, the pilot
studies discussed above showed that no such cancellation
of 0 by either A1 or A2 could be obtained. We therefore
conclude that the function fs is probably not a component
of an early pointwise, visual nonlinearity.

4. SUMMARY

We have introduced a new psychophysical methodology
called histogram contrast analysis for analyzing and esti-
mating early stimulus measurements carried out by the
visual system in drawing distinctions in the visual field.
The basic techniques embraced by histogram contrast
analysis are elaborated in Subsections 2.C-2.E and sum-
marized in Subsection 2.F. Histogram contrast analysis
can be used first to determine whether discriminations
within a space S of IID textures of a given micropattern
set fl (for definitions see Subsection 2.A.8.c) are conso-
nant with the hypothesis that, among all the measures
that the visual system uses in drawing visual distinc-
tions, there is only a single such measure T that plays
an effective role in drawing distinctions between textures
in S. If this one-dimensionality hypothesis holds, S is
said to be perceptually elementary. In this case, for dT,
the function reflecting the differential sensitivity of T to
the micropatterns of Ql, histogram contrast analysis can
be used to produce a function fs that precisely character-
izes the portion of dT that is relevant to discrimination
between textures in S.

In Section 3 histogram contrast analysis was applied
to a particular space of IID textures whose texels were
drawn from a small set F of gray squares of various
luminances. We concentrated on a space S of such
textures for which the mean and the variance of the
luminance across the texture were kept constant. It
seemed likely (for reasons elaborated in Subsection 3.A)
that such a space S would be perceptually elementary
(Subsection 2.B.2). The method was applied success-
fully. For one subject it turned out that S was percep-
tually elementary, and the characteristic function fS was
estimated (Fig. 10). That S was perceptually elementary
for this subject was confirmed despite a very large num-
ber of trials and several strong tests of that assumption.
For a second subject the test that S was perceptually ele-
mentary failed in one of two cases, although the failure
was relatively small.

For dT, the function reflecting T's differential sensitiv-
ity to the micropatterns in F, the characteristic function

fS is the portion of dT that enters actively into the draw-
ing of distinctions within S. Specifically, for functions
go, ;1, and 2 defined by setting V(v) = 1, 1(v) = v, and
{2(V) = v2, proposition A.1 below implies that fs is the
projection of dT into the space of all functions orthogonal
to all of ;0, ;1, and {2.

We argued (Subsection 3.E) that T is probably a specific
back-pocket channel and that the obtained characteristic
function fs is a partial characterization of the nonlinear,
pointwise transformation following the linear filter used
by T.

Finally, it is important to note that the theoretical ar-
guments made in this paper are quite general and may be
applied to any sensory task for which analogous random
textures may be made. Examples are spatial vision tasks
with more complex texels, temporal visual textures (i.e.,
flicker; see Ref. 26), temporal acoustical textures (i.e., tim-
bres or melodies), and spatial tactile textures.

APPENDIX A

This appendix concerns micropattern set F, studied ex-
perimentally in Section 3. The discussion presented
here supports the assertion in Section 3 that all IID tex-
tures generated by the space of modulators spanned by
A3, A4, . . , A16 relative to the uniform distribution U have
equal mean and variance. Recall that the set F consists
of small uniform squares of linearly increasing gray levels
0, 1, .. , 16 (see Fig. 1). For convenience we identify the
elements of F with their respective gray levels and write
simply i for the square micropattern having intensity i.

Let ;1 and {2 be the polynomial functions of f defined by

(Al)

for i = 0, 1, ... , 16.
Note that, for any distribution p of F,

16

E[Xp] = ip(i) = P.
i=0

(A2)

16 -16 -2

var[Xp] E[Xp2] - E i2p(i)- [1 ip(i)
i-o i=O

= 2 p - [1 _ p]2 . (A3)

We now state the main point of this appendix:
Proposition A. 1. Let p be a probability distribution on

F. The set A of all IID textures Iq such that E[Xq] =
E[Xp] and var[Xq] = var[Xp] is equal to the set B of all
IID textures Ipp such that 0 is orthogonal to both ;
and {2.

Proof. Suppose that 'q E A. Then q = q - p is a
modulator of p (since p + b = q). Moreover,

(q - p) = q - - p = E[Xq] - E[Xp].
(A4)

But because Iq E A, the right-hand side of Eq. (A4) is 0.
Thus -' = 0. Similarly,

{2 =2 - (q - p) = {2 q - 2 p = E[Xq2] - E[Xp2].
(A5)
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Because I, E A, E2 [Xq] = E2 [X,]. Thus the right-hand
side of Eq. (A5) can be rewritten as

E[Xq2] - E2[Xq] - (E[Xp2] - E2[Xp])

= var[X,] - var[Xq] = 0, (A6)

implying that A C B.
On the other hand, suppose that Ip,+ E B. Then

E[Xp+ol= ;1 (P + 0) = ; - P + ;1 ' 0 = ; - P

(A7)= E[Xp],

var[Xp+]= {2 -(p + 4) - [L -(p + k)]2

= {2 ' P + 2 - 40 - (-1 ' P + ;1 0)2
= 2 - p - (; - p)2 = var[Xp]. (A8)

Hence 'p+'k E A, proving that B C A. .
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