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ABSTRACT 

Taking Fitts’s law as a premise – i.e., movement time is a linear function of an 
appropriate index of difficulty – we explore three concerns related to the collection and 
reporting of these data from the perspective of application within HCI. The central issue 
is whether results obtained using blocked target conditions are representative of 
performance in situations in which, as is often the case, target conditions vary from 
movement to movement. Although varied target conditions lead to longer movement 
times, the effect is additive and surprisingly small, suggesting that evaluating devices or 
designs using blocked data may be acceptable. With Zhai (2004) we argue against the 
practice, advocated by the ISO9241-9 standard (ISO, 2000), of using throughput as a one-
dimensional summary for comparisons of devices or designs. Also questioned is whether 
analyses using an accuracy-adjusted index of difficulty are appropriate in all design 
applications. 
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1. INTRODUCTION 

Fitts’s law is a highly successful formulation that describes how the time to complete 
a movement depends on the distance to be covered and the spatial accuracy required. 
Although Fitts’s law does not apply to all movements, the class of movements to which it 
does apply is large and of immense practical significance. This applicability has 
stimulated interest in this formulation beyond its basic research origins. This interest has 
both led to a large increase in the number of papers appearing in traditionally applied 
outlets that use Fitts’s law and to an international standard that specifies how Fitts’s law 
results should be used to characterize and compare input devices (ISO, 2000).  

The purpose of this paper is neither to extend nor question Fitts’s Law, which we will 
take as a given. Instead we wish to explore three issues that have arisen as Fitts’s law has 
been applied in human-computer interaction (HCI). The theme that unites these three 
issues is a concern that ideas and practices, which emerged from the basic research that 
provided the underpinnings of Fitts’s law, have been adopted by applied researchers 
without sufficient scrutiny. Recent standardization efforts have made these issues more 
salient. Although standardization will almost certainly produce research results that are 
more consistent, standardization could also have negative effects if the research produced 
either is reported incompletely or is misleading when generalized to the situations that are 
of practical interest.  

The central issue we will explore is whether an experimental design choice, which 
may make sense in a basic-research setting and is often used in applied studies, 
appropriately reflects the real-world situations to which the results are to be generalized. 
The two remaining issues emerged as we reflected on recommendations in the literature 
for how to analyze and report our data related to this central issue.  

1.1. Background 

Fitts’s law holds that the time, T, to complete a speeded movement to a target is a 
linear function of an index of difficulty, ID, characterizing the movement:  

IDbaT  .  (1) 
The index of difficulty depends on the distance, D, from the starting point to the center of 
the target, and the width, W, of the target. The definition of ID has evolved since the 
initial, admittedly ad hoc formulation proposed by Fitts (1954):  WDID 2log2 . The 
version of the index of difficulty now typically used in HCI applications is (MacKenzie, 
1992; Soukoreff & MacKenzie, 2004) 







  1log2 W

D
ID . (2) 
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All the proposed modifications of Equation 2 have the more general form  WDfT  ; 
where f ( ) is a simple (i.e., linear, logarithmic, or power) function of the dimensionless 
ratio D/W (Guiard & Beaudouin-Lafon, 2004).1 

A second, important development related to Fitts’s law has grown out of the 
observation that participants in these experiments often do not adjust their performance as 
much as might be expected when target width is changed. Specifically, changes in 
endpoint variability are typically much smaller than would be expected when target width 
is manipulated.  To compensate for this, Welford (1960; 1968, pp. 147-148) suggested 
that ID be replaced with an effective index of difficulty, IDe, in which an estimate of the 
effective target width, We, computed from the movement endpoints, replaces W, the 
nominal target width.  









 1log2

e
e W

D
ID  (3) 

Although Fitts used an accuracy adjustment in his later work (Fitts & Radford, 1966)2, it 
has not always been adopted (MacKenzie, 1992). 

Over the last half century, Fitts's law has been well-studied and has proven to be 
highly successful. Data obtained using a large variety of input devices across a broad 
array of conditions are well fit by Equation 1 with R2 values of .80 or higher (Plamondon 
& Alimi, 1997); the variance accounted is generally highest when Equation (2) is used to 
calculate the index of difficulty and when the accuracy adjustment is used. 

Fitts’s papers contained elements of both basic and applied research. His formulation 
grew out an effort to understand human performance from the theoretical perspective of 
information theory. However, from a more practical perspective, he also proposed an 
index of performance (Fitts, 1954, Eq. (2)), 

MT
IDIP    (4) 

as a measure of throughput combining both speed and accuracy. This measure, which has 
units bits of information per unit of time, was adapted from information theory where it is 
used as a measure of the channel capacity.  Fitts’s expectation was that throughput would 
be a constant that could be used to characterize and compare operator performance with 
different devices and in different movement contexts.  

                                                 
1 In our opinion, the “best” formulation for the index of difficulty is a power 

function:  pWD , where p is a fractional exponent ( 10   ). Kvålseth (1980) first 
made the case that this form generally fits movement time data better than one based on 
the logarithm, the shape of which approaches that of the power function as p gets close to 
zero. We prefer this form because of the theoretical and empirical justifications for it 
provided by Meyer, Smith, Kornblum, Abrams, and Wright (1990). However, for 
descriptive purposes, Equation (2) is fine, and, since it is widely used in this literature, we 
will use it here. 

2 Although Fitts and Radford used the accuracy adjustment, the adjustment they 
used was based on the proportion of movements that were errors – ended outside of the 
target region – not the recorded movement endpoints.  
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1.2. Fitts’s Law in Basic Research and Applied Settings 

Although the specific form for the index of performance has been a subject of debate, 
Fitts’s idea of using these or similar results to characterize movement situations and input 
devices has become increasingly influential in HCI (MacKenzie, 1992), especially after 
Card and his colleagues used the results from an application of Equation 1 (Card, English 
& Burr, 1978) to justify commercialization of the mouse by Xerox. Of specific interest to 
HCI researchers, Fitts’s law has been found to apply to pointing and dragging using a 
mouse, trackball, stylus, joystick, and touchscreen. The results have been used both to 
assess and compare throughput and as part of larger models to predict performance in 
new user interfaces (e.g., Card, Moran, & Newell, 1983). This has led to the 
promulgation of an international standard, ISO9241-9, that provides guidelines for such 
evaluations (ISO, 2000). Other, more detailed, recommendations for how these 
evaluations should be conducted have been proposed by Soukoreff and MacKenzie 
(2004). These attempts at standardization are important if they help reduce the confusion 
in the literature due to conflicting results arising from methodological differences 
(MacKenzie, 1992). To evaluate this possibility for pointing movements made with the 
mouse, Soukoreff and MacKenzie (2004) compared 9 studies of that followed ISO9241-9 
and 24 studies that did not. They found a dramatic increase in consistency of the results 
for the studies that followed ISO9241-9. 

1.3. Issue 1: External Validity of Fitts’s Law Studies 

Inferences about cause-effect relationships based on specific scientific studies are said 
to possess external validity if they may be generalized from the unique and idiosyncratic 
settings, procedures and participants of those studies to other populations and conditions. 
This issue is often critical in design applications where the goal is to use information 
derived from research settings to make design decisions. Of course, the best way to settle 
external validity concerns is a replication using the settings, procedures, and participants 
of the intended application. However, for obvious practical reasons designers often prefer 
to generalize results from available, prior research when making design choices. Our 
central concern here is that the methodology of much of the research using Fitts’s law, 
including studies adhering to the suggestions of ISO 9241-9 (ISO 2002) and Soukoreff 
and MacKenzie (2004), may generalize poorly to the situations typically encountered in 
the HCI applications of that research: i.e., the coefficients of Equation (1) derived from 
such research may deviate systematically from those obtained using procedures more like 
the situations encountered in the application environments. 

The procedural aspect of particular concern here is the blocking of target conditions, 
where “target conditions” refers to combinations of D and W. Recommendation II of 
Soukoreff and MacKenzie (2004, p. 755) is in line with the practice followed in many 
studies based on Fitts’s law. They suggest studying a variety of target conditions that 
include multiple levels of D and W chosen so that nominal ID values associated with the 
target conditions span a range between 2 and 8 bits. Each target condition should be 
presented enough times – they suggest between 15 and 25 – that an accurate estimate of 
the central tendency can be ascertained for each participant using each target condition. 
Although there is no specific recommendation to this effect, either by Soukoreff and 
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MacKenzie or in ISO 9241-9, a natural way to structure the repeated presentations for a 
particular target condition is to block them: i.e., present a sequence of trials all having the 
same target condition. Blocking of the target conditions certainly is not necessary. Pastel 
(2011) is an example of a study that randomizes the target conditions. However, of the 
nine studies cited in Soukoreff and MacKenzie (2004) as examples that have followed 
ISO 9241-9, the six that we could obtain and that included enough detail to determine 
how the conditions were ordered, all blocked target conditions. It is also suggestive that 
some studies report not only blocking target conditions but discarding the first several 
trials within each block so that the data analyzed would better reflect optimum 
performance possible in that target condition.  

Blocking target conditions and discarding initial trials within blocks may make 
perfect sense in the context of basic research. However, it is far from clear that the results 
obtained using these procedures accurately describe performance in typical HCI 
applications. Making matters worse, we know of no studies that include or allow direct 
comparison of results obtained using blocked and fully varying target conditions.3 The 
study reported here addresses that question.  

In addition to manipulating the order of target conditions, this study also compares 
performance for discrete and continuous4 movements. In discrete movements, the 
participant moves to a starting point and then, after a signal, initiates a movement to the 
target. After a pause, and possibly some feedback, this procedure is then repeated. In the 
continuous movement task, after completing a movement, the participant immediately 
initiates a subsequent movement, typically in the opposite direction; the process is 
repeated until the full sequence is done. Each of these procedures seems more or less like 
some HCI situations.  

Unlike the manipulation of blocked versus varied target conditions, there is some data 
about the comparison of discrete and continuous movements. In his first paper, Fitts 

                                                 
3 This statement is qualified because there have been several studies (e.g., Megaw, 

1975) that looked at limited variations of the target conditions in a continuous, reciprocal, 
stylus-tapping task (like that studied by Fitts, 1954; see below).  One experiment included 
conditions in which D was constant but the widths of the left and right targets were 
different. The analysis looked at MT as a function of the width of that target and the 
target of previous movement – since this was a continuous, reciprocal task, the endpoint 
of the previous movement is the starting point for the current movement. These were 
inversely related: MT time decreased substantially as the width of the previous target 
increased. Particularly striking was the observation that, when the previous target was 
larger than the current target, MT was faster than it was in a condition in which the width 
of the two targets was identical. Megaw also studied successive movements that had 
different Ds, but constant W. In this condition, MT was about 35 ms slower and did not 
depend systematically on the target conditions of the previous movement. 

4 Our use of the term “continuous” for this condition follows the terminology 
introduced by Fitts and Peterson (1964). ISO 9241-9 (ISO 2002) and Soukoreff and 
MacKenzie (2004) use “serial” to describe the same condition. We are using the original 
terminology because it seems more accurately descriptive. 
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(1954) used a continuous, stylus-tapping task. A decade later, he (Fitts & Peterson, 1964) 
used the same apparatus in a discrete version of the task. Figure 2 of this second paper 
compares the data from these two experiments. In this figure, MT for the continuous task 
is longer than that for the discrete task across the full range of ID values studied and gets 
larger as ID increases: for an ID of 2, the difference was roughly 100 ms and it increased 
to roughly 210 ms for an ID of 7. Fitts and Peterson (1964) expected these results both 
because MT in their continuous task included between movement latencies that were 
excluded in their discrete task and, more fundamentally, because, in the discrete task, the 
participant starts each movement after having had time to program its parameters. 
However, the interpretation of their data is clouded because the average error rates were 
quite different in the two tasks: for the discrete task there were 10.5% target misses on 
average, almost ten times as high as the 1.2% for the cyclical task.  

Guiard (1997) provides a direct comparison of discrete versus continuous movements 
using a linear positioning task. To make the conditions more similar, participants pushed 
a button on the manipulandum to signal the end of a movement and before initiating a 
discrete movement. Replicating the conclusion derived from Fitts’s experiments, the 
slope of the function relating MT to IDe was larger in the continuous condition (277 ms / 
bit) than in the discrete condition (205 ms / bit), and the direction of this difference was 
the same for all six participants. However, unlike the data from Fitts, Guiard found that, 
for all six participants, these functions crossed somewhere in the IDe range between 2 and 
6, and that this point of intersection was strongly correlated with a participant’s overall 
movement time: the faster the participant the higher the IDe at the point of intersection. 

This manipulation of discrete versus continuous movements was included here 
because, for two reasons, we suspected that any differences between the blocked and 
varied target conditions might be larger with the continuous procedure than with the 
discrete procedure. From an information processing perspective and consistent with the 
expectation of Fitts and Peterson (1964), the implicit pressure to spend less time on 
movement planning in the continuous condition might impose a larger penalty when the 
target conditions are varied than when they remain constant. From the perspective of 
dynamical systems applied to the Fitts task (Guiard, 1993), the ability to recycle kinetic 
energy in the continuous task appears to depend on the harmonicity of the repetitive 
movements. Guiard (1993; 1997) has shown that, with target conditions blocked, this 
advantage is reduced for more difficult movements. It seems plausible that this advantage 
might also be reduced when the target conditions are varied. 

1.4. Issue 2: Summaries Based on IP, the Index of Performance 

Having collected the data to evaluate Issue 1, we encountered several issues about 
how to analyze and report it. As noted in the Background section, Fitts (1954) initially 
proposed the measure of throughput in Equation (4) as a single-valued “index of 
performance.” However, if Equation 1 is correct that MT is a linear function of ID, then 
the intercept, a, would have to be zero or at least relatively small for this summary to be 
approximately constant. Although it might seem intuitively plausible for MT to approach 
zero as ID does and intercept values indistinguishable from zero have occasionally been 
observed, typically the intercept is found to be positive, and, in a few cases, including 
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Fitts and Peterson (1964, p. 107) negative intercepts have been reported. Because the zero 
intercept is outside the observable range of ID values,5 its value is an extrapolation from 
the data. As with any extrapolation, estimates of the intercept should be interpreted 
cautiously. According to one widely cited interpretation of the intercept, it should be 
positive and reflect fixed perceptual and/or motor processes (e.g., target selection) that, 
although required, are not influenced by movement difficulty (Welford, 1968).  

Whatever the source, as Zhai (2004) has elegantly pointed out, the presence of a non-
zero intercept implies that IP must vary, sometimes substantially, across target conditions 
with different ID. This problem is hardly resolved by averaging across a set of target 
conditions as recommended by Soukoreff and MacKenzie (2004), because the resulting 
average must also necessarily depend on the distribution of the ID values of the 
conditions included in the average. This fact makes comparisons of IP across 
experiments problematic. As will be demonstrated in the Discussion, problems with IP 
constancy can arise in comparisons of conditions within an experiment. 

Perhaps because of similar concerns, Fitts subsequently proposed using the inverse of 
the slope coefficient,  

bIP 1 , (5) 

as a measure of ‘‘relatively constant information capacity over a range of movement 
conditions’’ (Fitts and Radford, 1966, p. 476). Given the information theory approach 
that motivated Fitts’s work in this area, this definition makes perfect sense. Equation 5 
also has the advantage over Equation (4) that, for any range of ID values over which 
Equation (1) holds, the expected value of this estimate will be constant.6 The 
disadvantage of this approach is that focusing solely on the inverse slope coefficient and 
ignoring a non-zero intercept discards important information. From an applied 
perspective, what typically matters is not a theoretical construct such as information 
capacity but rather the expected time required to complete pointing operations with 
different levels of difficulty and, as Equation (1) states, that time depends on both the 

                                                 
5 Using Equation (3), the smallest plausible value of ID is 0.585. However, this 

describes conditions, in which D = W/2: i.e., the target region extends all the way back to 
the starting point. 

6 Soukoreff and MacKenzie (2004, p. 775) display an equation for 1/b that is 
related to an intermediate step in the standard derivation of the slope estimator for linear 
regression. They assert, incorrectly, that the form of this equation supports their claim 
that estimates of the inverse slope are sensitive to the values of the independent variable, 
in this case of ID, associated with the observations that are included in the estimate. 
However, if the function relating MT and ID is linear, as Equation (1) holds, then, unlike 
IP, the expected value of the inverse slope coefficient does not depend on the particular 
ID values observed. ID appears in the equation displayed by Soukoreff and MacKenzie to 
normalize the slope estimate. In effect this sets the scale, or units (e.g., bits per s), of the 
inverse slope coefficient. If the scale of the ID values were to change, for example if the 
logarithm were taken with a base of 10 rather than 2, this would simply change the units 
(i.e., to ms per digit). 
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intercept and the slope. Thus, we agree with Zhai (2004) that both coefficients should 
always be considered when characterizing perceptual-motor systems (Zhai, 2004).  

Many reports using Fitts’s law have included both the intercept and slope parameters. 
In fact, later in the paper cited above (Fitts & Radford, 1966, p. 480), Fitts talks about 
using both to characterize the human motor system. Also, the first paper to apply the Fitts 
Law approach to HCI, Card, English, and Burr (1978) also report the full equation for 
each device. However, a disturbing number of subsequent papers in applied areas (see 
Zhai, 2004, p. 795, for one listing) have based their assessments on either only Equation 
(4) or Equation (5).  

Even more troubling is that Annex B to ISO 9241-9, which describe procedures for 
testing the efficiency and effectiveness of input devices, states that the goal of testing 
should be to “provide a measure of throughput” (ISO, 2000, p. 28) and goes on to define 
throughput as MTIDe (p. 30). Soukoreff and MacKenzie (2004) have provided useful 

elaborations and extensions of the procedural recommendations in ISO 0241-9. Their 
seven recommendations include detailed instructions for obtaining data and fitting it 
using the version of Equation (1) based on IDe. These instructions implicitly 
acknowledge a role for both coefficients. However, their seventh recommendation is 
more in line with the position taken by ISO 9241-9. This recommendation is to be applied 
when the purpose of an analysis is to compare two or more conditions. Such comparisons 
are to be based on a variant of the IP measure based on IDe, which they call throughput 
and label TP. They assert that the advantage of this approach is that “Calculated this way, 
TP is a complete measure encompassing both the speed and accuracy of the movement 
performance” (p. 760).  

Although we can understand the appeal of being able to characterize and compare 
different operators, conditions, or devices using a one-dimensional metric, the 
inconvenient truth of Equation 1 is that this is not generally possible. The one special 
case in which this approach works is when the difference between the conditions being 
compared is effectively confined to a difference in intercepts. When the slopes differ, 
even if the intercepts are zero, the size of the MT difference between the conditions will 
depend on ID; when the functions cross, the sign of the difference will change. Any 
single-measure approach to comparing conditions ignores these differences.  

As discussed in the previous section, Guiard (1997) found that the Fitts’s law lines for 
discrete and continuous movements cross. Thus, whether the MT of discrete or 
continuous movements will be less depends on the movement difficulty. This is a subtlety 
that is completely lost if the comparison is based on only IP or the inverse slope. Because 
we expected similar issues in the data from our experiment, we will ignore the 
recommendation to base comparisons on either of these measures and, instead report both 
coefficients from the fit of Equation 1. We believe that this should become the general 
practice. 
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1.5. Issue 3: Use of IDe and the Accuracy Adjustment 

As outlined in the Background section, using the effective index of difficulty, IDe, 
rather than ID, the value computed from the nominal conditions, makes sense both in 
terms of what participants actually do and because this step typically improves the fit of 
Equation (1). Given this, it is not surprising that both ISO 9241-9 (ISO 2002, p. 30) and 
Soukoreff and MacKenzie (2004, p. 755-757, Recommendation IV) endorse this 
accuracy adjustment.  

While not questioning that the accuracy adjustment provides a better description of 
movement time, we believe that basing design decisions on accuracy-adjusted data is a 
mistake. The problem is simple: in design situations what is typically known are the 
nominal conditions not the effective conditions. It seems almost like common sense that 
it is a mistake to make predictions using a model based on IDe as the input parameter 
when all that is known are ID values. If there were a way to predict how operators 
respond to the nominal target conditions to produce the effective target conditions, then, 
of course, one would wish to use the more accurate model of Fitts’s law based on IDe to 
predict movement times. However, to the best of our knowledge such a model does not 
exist. Given this concern, we decided to report the estimated coefficients for Equation 1 
based on both ID and IDe, since each is best suited for different purposes. 

2. METHODS 

2.1. Participants 

There were 13 participants (7 males); all had vision correctible to 20/20 or better and 
were right-handed. One female participant dropped out after the second session, due to 
scheduling conflicts. Each of the remaining participants took part in three, one-hour 
sessions. Subjects were paid $10/hr. The protocol for this experiment was approved by 
the UCI Institutional Review Board. 

 

2.2. Apparatus 

A PC running a custom program written in MATLAB was used to present stimuli and 
record responses. Stimuli were presented on a 17” computer monitor running at a 60 Hz 
refresh rate with a resolution of 1280 x 1024 pixels. The screen was calibrated so that 1 
pixel extended 0.25 mm in both the horizontal and vertical dimensions. Participants used 
a Logitech optical mouse (Model #M-98C) to make responses. All movement 
acceleration software was disabled so that a mouse movement of 1 mm produced a 
constant cursor movement of 5 mm (20 pixels).   
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2.3. Design  

There were three factors all manipulated within subjects: the target condition factor 
and two running condition factors. The target condition factor had ten levels. As shown in 
Table 1, these were constructed from six levels each of D and W producing nine unique 
ID levels. The two running condition factors each had two levels producing four 
conditions.  

Table 1. Nominal target conditions. 
 
Target Distance, D 

(pixels) 
Target Width, W 

(pixels) 
Index of Difficulty, ID 

(bits) 
50 9 1.92 

100 10 2.58 
200 14 3.03 
200 10 3.46 
100 4 3.75 
400 16 3.75 
800 15 4.79 
600 9 5.10 
400 4 5.67 
600 4 6.25 

The experiment was organized into blocks of 22 movements. The first two 
movements in each block were not included in the analyses. Each hour-long session 
consisted of 40 blocks, organized into four sets of ten blocks. One of the four running 
conditions was done in each of these four sets with their order balanced across groups of 
four participants using a different digram-balanced Latin Square for each of the three 
groups. 

The first of the two running conditions determined whether the target conditions were 
varied or blocked. How this was implemented is explained further in the Procedures. In 
the varied condition, target conditions occurred in a pseudo-random order generated with 
two constraints. First, each of the ten target conditions occurred twice in movements 3 
through 22 of each block; the target conditions for the first two movements were not 
included in this constraint. Second, a target condition could not be selected if it would 
result in a target closer than 100 pixels from the left or right edge of the screen. Across 
ten blocks each target condition occurred 20 times, ignoring the first two trials in each 
block. When target conditions were blocked, each of the ten target conditions defined all 
of the movements in one block. Across ten blocks each condition occurred once, 
producing data from 20 trials, ignoring the first two trials in each block. The order of the 
target conditions was approximately balanced across participants. 

The second of the running condition factors determined whether the movements in a 
block were to be produced as a continuous sequence or discretely. How this manipulation 
was implemented is explained in the Procedures. 
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2.4. Procedures 

Before each block a displayed message provided the participant a description of the 
running condition (blocked versus varied; discrete versus continuous). At the end of each 
block, a display told the participant the mean movement time and number of targets 
missed. The experimenter compared these with previous values in similar conditions and 
verbally encouraged the participant to move quickly while minimizing errors. 

Figure 1 is a scale reproduction of an example stimulus display at the start of a block 
with varied target conditions. The small cross (5 pixels across) was the cursor and moved 
as the mouse moved. The dot was the starting point 6 pixels in diameter); it was 
displayed as a filled red circle when the cursor was too far from the starting point and a 
filled green circle when the cursor was within 3 pixels of the starting point. Once the 
cursor had remained in the target region for 0.5 s, a tone was presented. The tone 
indicated that the participant was free to start the first movement at any time. The onset 
of the tone also began the latency period which ended as soon as the mouse had been 
moved 5 pixels away from its initial position. Having moved the mouse to bring the 
cursor within the target rectangle, the participant pushed a mouse button indicating that 
the movement was complete. If the movement ended outside of the target rectangle, the 
error was noted but no immediate feedback was given. 

Figure 1. Reproduction of a possible stimulus display at the start of a varied target 
condition block. 
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The 22 rectangles were the targets for the block. The target for the next movement 
was always highlighted by being displayed with a white outline on the gray background; 
all of the other targets were displayed with black outlines. In Figure 1, the highlighted 
target is drawn with a heavier line. The vertical center of the next target was always 
displayed at the same vertical position. This was possible because, as soon as the 
movement to a target has been completed, the box for that target disappeared from the 
screen, the vertical position of all of the remaining targets were moved up the screen, and 
the next target, which was now at the same vertical position as the previous target was 
highlighted. 

Figure 1 is an example of the stimulus display when running the condition in which 
the target conditions were varied from one movement to the next. Note that the horizontal 
width of each rectangle, the target width, W, varied from target to target, but the vertical 
size is constant (35 pixels). The first movement was always to the right. In this case, it 
had a large target distance, D, and a moderate W. Each succeeding movement was always 
in the opposite direction. In this case, the second movement, to the left, had the same D 
and a smaller W, and the third movement, to the right, had a small D, and a somewhat 
larger W. When the target conditions were blocked, all of the rectangles had the same W 
and, ignoring the alternating directions, were the same D apart. Thus the target rectangles 
appeared in two vertical columns. 

In the continuous running condition, the participant was free to start each successive 
movement as soon as the mouse button had been clicked to end the previous movement. 
The button click began the timing of the latency period that ended as soon as the mouse 
had been moved 5 pixels from the position recorded at the button click. In the discrete 
condition, as soon as the mouse button had been clicked a new starting point circle was 
displayed at the center of what had just been the movement target. At this point the 
participant had to move the cursor to the starting point and wait for the go signal just as 
with the first movement in the block. 

3. RESULTS 

3.1. Latency  

For discrete movements, the latency was the time from the GO signal until the start of 
the movement was detected. For all but the first movement in a continuous movement 
block, there was no GO signal. For these blocks, what was recorded as the latency was 
the time between the mouse button press ending the previous movement and the detection 
of movement in the opposite direction, in essence the dwell time. Given these procedural 
differences, the mean latency for the discrete movements (525  42 ms7) is not directly 
comparable to that for the continuous movements (72  12 ms). There was no difference 
between the varied and blocked conditions [t(11) = 0.589]. Of potentially more interest is 
whether the ID of the upcoming movement influenced the latency. It did, but only in the 
discrete-varied condition where the slope relating latency to ID was 6.0  5.7 ms per bit. 

                                                 
7 This notation, X  Y, gives a mean value, the X, followed by the half width of the 

95% confidence interval for that value, the Y. 
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The other three slope estimates were 1.6  3.8 ms per bit for the discrete-blocked 
condition, -0.4  1.5 ms per bit for the continuous-blocked condition, and -0.1  1.5 ms 
per bit for the continuous-varied condition. 

3.2. Practice Effects 

Each participant produced data in each condition on each of three days. Not 
surprisingly, performance improved with practice when it was assessed either as the 
mean MT or as the slope relating MT to ID. The improvement was larger and statistically 
significant between Day 1 and Day 2 [the decrease in MT was 55.5 ms, MSE = 3078, F(1, 
11) = 47.889, p = .000; the decrease in slope was 11.0 ms per bit, MSE = 461.1, F(1, 11) 
= 12.530, p = .005] and smaller and not quite significant between Days 2 and 3 [the 
decrease in MT was 13.5 ms, MSE = 2850, F(1, 11) = 3.162, p = .103; the decrease in 
slope was 4.2 ms per bit, MSE = 225.3, F(1, 11) = 3.792, p = .077]. Potentially more 
important is that the MT in the discrete condition was longer than that in the continuous 
condition for all three days: 98 ms, 69 ms, and 57 ms, respectively. The difference 
between Day 1 and Day 2 was almost statistically significant [MSE = 2589, F(1, 11) = 
4.004, p = .071]; that between Days 2 and 3 did not approach significance [MSE = 1377, 
F(1, 11) = 1.222, p = .293]. The mean slope was smaller in the discrete condition for all 
three days: 2.8 ms per bit, 13.2 ms per bit, and 19.9 ms per bit, respectively. The 
difference between Day 1 and second encounter was statistically significant [MSE = 
117.8, F(1, 11) = 11.159, p = .007]; that between Days 2 and 3 did not approach 
significance [MSE = 480.9, F(1, 11) = 1.122, p = .312]. Based on this pattern, the data 
from Day 1 were excluded from analyses that follow, and the data were collapsed across 
the second and third encounters within each condition. Including the Day 1 data does not 
qualitatively change any of the results reported below, but it does reduce the precision of 
some of the comparisons. 

3.3. Movement Time versus Index of Difficulty 

Figure 2 displays data averaged across participants showing the relationship between 
MT and ID for the four conditions of this experiment. Straight lines provide good fits to 
both the mean data (R2 varied between .963 and .987) and to the data for each participant. 
Linear functions were fit separately to the data from each participant in each of the four 
running conditions. The resulting coefficients are summarized in Table 2. Fitts’s law is 
typically parameterized using the slope and zero intercept. However, because these 
parameters must necessarily be highly correlated given the range of ID values, we prefer 
to also report and focus on the mean MT computed here at ID = 4, close to the average 
ID. 

MT was larger for discrete than for continuous movements [t(11) = 3.036, p = .011]. 
There was not a reliable difference between the varied and blocked Conditions [t(11) = 
1.692, p = .119]. However, both of these main effects were modified somewhat by their 
interaction [t(11) = 2.832, p = .016. As expected, the effect of this interaction was that the 
difference between varied and blocked sequences was larger in the continuous condition 
[ = 16 ± 13 ms, t(11) = 2.688, p = 0.021 (Bonferroni corrected α = .025)], than in the 
discrete condition [ = 5 ± 16 ms, t(11) = 0.755]. The slope of the linear function relating  
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Figure 2. MT averaged over participants as a function of ID for each of the four 
conditions. 
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Table 2. Mean coefficients, averaged over participants, and the half width of the 
95% confidence interval for the linear fit of MT versus ID for each of the 
four running conditions. 

 
  Mean MT (ms) at ID = 4   
  Continuous Discrete Mean Varied - Blocked 

Varied 629 + 42 681 + 66 655 + 50 

22 + 29 Blocked 596 + 57 670 + 84 633 + 69 

Mean 612 + 49 675 + 74 644 + 58 
Continuous 
- Discrete 

-63 + 45   
Interaction  

11 + 8 

  MT versus  ID Linear Slope (ms / bit)   
  Continuous Discrete Mean Varied - Blocked 

Varied 114 + 12 96 + 11 105 + 10 

-0.2 + 6 Blocked 113 + 12 99 + 18 106 + 14 

Mean 114 + 12 97 + 14 106 + 12 
Continuous 
- Discrete 

17 + 8   
Interaction  

2 + 7 

  MT versus  ID Zero Intercept (ms)   
  Continuous Discrete Mean Varied - Blocked 

Varied 169 + 44 297 + 56 233 + 38 

23 + 19 Blocked 144 + 41 276 + 61 210 + 46 

Mean 157 + 40 286 + 56 221 + 41 
Continuous 
- Discrete 

-130 + 53   
Interaction  

2 + 25 
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MT to ID was larger for the continuous than for the discrete movements [t(11) = 4.607, p 
= .001]. For the slopes there was neither a reliable difference between the varied and 
blocked conditions [t(11) = 0.097] nor an interaction [t(11) = 0.676]. The effect of this 
combination of differences in the means and the slopes is that the MT of the continuous 
movements was smaller than that of the discrete movements; however, this difference 
was reduced as ID increased, and, for the continuous-varied condition, the advantage 
over the discrete conditions was eliminated at the highest IDs. 

3.4. Missed-Target Errors 

A simple interpretation of the MT versus ID relation is only possible if the proportion 
of missed target errors did not vary systematically across conditions. Although errors 
occurred on only 1.7%  1.2% of trials, this percentage did depend on both the running 
condition and the W. Errors occurred more often [t(11) = 2.719, p = .020] for continuous 
movements (3.0%  2.3%) than for discrete movements (0.4%  0.3%).8 There was not a 
difference between the varied and blocked conditions [t(11) = 0.859] nor was there an 
interaction of these factors [t(11) = 0.081]. The percentage of errors also decreased 
significantly with increasing W [slope = -0.13  0.11, t(11) = -2.604, p = .025] and this 
decrease was larger [t(11) = 2.322, p = .027] for continuous movements (-0.20  0.18) 
than for discrete movements (-0.05  0.04). This decrease did not vary reliably between 
the varied and blocked conditions [t(11) = 1.682, p = .120] nor was there an interaction of 
these factors [t(11) = -0.542]. 

3.5. Effective Target Width 

The presence of systematic differences in the rate of missed target errors suggests that 
participants may have responded to changes in W differently across conditions. For this 
experiment, the standard deviation of the horizontal endpoint positions, sdx, was used as 
the basis of the We estimate. A multiple regression of sdx against D and W was performed 
for the data of each participant in each of the four running conditions. These three-
parameter fits described the variation in sdx well: the median of the R2 for these fits was 
.86; the first and third quartiles were .82 and .88, respectively. We chose this model over 
one that simply used ID as a predictor, because for that model the median of R2 = .11. 
The mean of sdx, evaluated at D = 300 and W = 20 (i.e., ID = 4) was 5.4 pixel  0.6 pixel. 
sdx increased slightly with D in three of the four running conditions as indicated by 
significant, positive slope estimates: discrete-varied, 0.082  0.055 pixels per 100 pixels; 
discrete-blocked, 0.098  0.064 pixels per 100 pixels; continuous-varied, -0.074  0.074 
pixels per 100 pixels; continuous-blocked, 0.084  0.075 pixels per 100 pixels. Also, as 
would be expected, sdx increased with W in all of running conditions [t(11) = 18.566, p = 

                                                 
8 These values are representative of all but one participant whose error rate for the 

continuous movements was 12.9% but only 1.2% for the discrete movements. However, 
excluding this subject did not change the qualitative description of these data. The overall 
error rate dropped to 1.2%  0.7% of trials. Errors still occurred more often [t(10) = 
3.368, p = .007] for continuous movements (2.1%  1.3%) than for discrete movements 
(0.4%  0.3%). 
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.000]. However, the slope describing this relationship was larger in the continuous 
movement conditions than in the discrete movement conditions [t(11) = 40.321, p = 
.000]: for discrete movements, the slope was 0.16  0.04 pixels per pixel; for the 
continuous movements, it was 0.25  0.02 pixels per pixel.  

3.6. Effective Movement Distance 

Just as it is dangerous to assume that participants respond to changes in W in a 
simple, consistent way, it is also possible that movement distances produced might not be 
simply related to D. To assess this possibility, a multiple regression of the average 
movement distance within each block versus D and W was performed for the data of each 
participant for each of the four running conditions. There was, however, almost no 
evidence for deviations of this sort. The intercept for this regression, which, to avoid 
extrapolation, was estimated at D = 300 and W = 20 was 299.96  0.23 pixels, which 
does not differ reliably from the expected value. This intercept did not vary reliably 
across the four running conditions. The slope relating the actual distance to D was 1.01  
0.04 pixels per 100 pixels. It did not vary reliably across the running conditions. 
Similarly, the slope relating the actual distance to W was 0.006  0.015 pixels per pixel, 
and this also did not vary reliably across the running conditions.  

3.7. Movement Time versus Effective Index of Difficulty 

Table 3 summarizes the coefficients for the linear relationship of MT and the effective 
index of difficulty, IDe, which was computed as the log2(De / We) where De is the mean of 
the measured movement amplitudes within a condition and We = 4.133 sdx. The constant 
in this equation is the one specified by ISO 9241-9 (ISO, 2000, Annex B, p. 29). Because 
this analysis produces different values of IDe for each participant in each of the four 
running conditions, it is no longer possible to average data across participants as in 
Figure 2. However, straight lines summarize the data from individual participants well 
(across participants and the four running conditions, the median R2 = .86). Compared 
with the fits based on ID in Table 2, these fits generally had smaller confidence intervals 
suggesting that using the estimated De and We, rather than their nominal values, produced 
results that were more consistent across participants. 

 The most striking change in the analysis based on IDe is that the difference in mean 
MT between discrete and continuous movements is much smaller and no longer 
statistically reliable [t(11) = 1.112, p = .290]. The difference between the varied and 
blocked conditions is also smaller in this analysis; however, because of the increased 
precision this difference is reliable [t(11) = 2.581, p = .026]. The results in this analysis 
are also more straightforward because the interaction is smaller and no longer statistically 
reliable [t(11) = 1.227, p = .245]. As in the analysis based on ID, the slope of the linear 
function relating MT to ID was larger for the continuous than for the discrete movements 
[t(11) = 3.198, p = .008]. And again there was neither a reliable difference between the 
varied and blocked conditions [t(11) = 1.585, p = .141] nor an interaction [t(11) = 0.102].  
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Table 3. Mean coefficients, averaged over participants, and the half width of the 
95% confidence interval for the linear fit of MT versus IDE for each of 
the four running conditions. 

 
  Mean MT (ms) at ID = 4   
  Continuous Discrete Mean Varied - Blocked 

Varied 686 + 34 698 + 61 692 + 47 

24 + 20 Blocked 655 + 49 681 + 74 668 + 60 

Mean 671 + 43 689 + 66 680 + 53 
Continuous 
- Discrete 

-19 + 37   
Interaction  

7 + 13 

  MT versus  ID Linear Slope (ms / bit)   
  Continuous Discrete Mean Varied - Blocked 

Varied 120 + 11 108 + 13 114 + 10 

-4 + 5 Blocked 124 + 11 111 + 15 118 + 12 

Mean 122 + 10 110 + 13 116 + 11 
Continuous 
- Discrete 

13 + 9   
Interaction  

0 + 9 

  MT versus  ID Zero Intercept (ms)   
  Continuous Discrete Mean Varied - Blocked 

Varied 205 + 33 265 + 42 235 + 27 

38 + 19 Blocked 158 + 26 236 + 54 197 + 33 

Mean 181 + 26 250 + 44 216 + 29 
Continuous 
- Discrete 

-69 + 43   
Interaction  

9 + 30 
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3.8. Peak Velocity 

The trajectories of movements in the Fitts task are usually observed to consist of an 
initial submovement, which ends close to or within the target, followed, if necessary, by 
one or more feedback-guided, corrective submovements (Meyer, Abrams, Kornblum, 
Wright, and Smith, 1988; Meyer, Smith, Kornblum, Abrams, Wright, 1990). One 
additional way in which the movements might differ systematically across the four 
running conditions is the speed of the initial submovement. Although a single 
submovement may vary in duration and average velocity, the velocity profile typically 
has a single peak and a fixed shape; this shape is multiplicatively scaled to produce 
movements with different average velocities and scaled in time to produce movements 
with different durations (Freund & Büdingen, 1978; Gordon & Ghez, 1987). Because of 
this invariance in the velocity profile shape, the peak velocity of a movement, which can 
be determined easily and reliably from movement trajectory data, is highly correlated 
with the average velocity of the initial submovement. Taking advantage of this regularity, 
a multiple regression of peak velocity against A and W was performed for the data of 
each participant in each of the four running conditions. The mean peak velocity was 3243 
 519 pixels/s. Mean peak velocity did not depend reliably on the difference between 
discrete and continuous movements [t(11) = 1.096, p = .296], varied versus fixed 
conditions [t(11) = 0.767], or their interaction [t(11) = 0.234]. Peak velocity did increase 
with D. The slope of the linear fit was 9.1  1.6 pixels per pixel; however, this slope did 
not differ across the four running conditions (all p-values < 1.0). Peak velocity also was 
not found to depend reliably on W. 

4. DISCUSSION 

The purpose of this study was to determine whether and, if so, how the coefficients 
characterizing the Fitts’s law relationship for the mouse depend on how the task is 
organized. The primary factor explored was whether variation in distance and target 
width was blocked, as is often true in published studies, or whether the target conditions 
varied from movement to movement. This experiment also explored the effects of 
whether movements in a block were produced as separate, discrete movements or one, 
continuous movement sequence. This second factor has been shown previously to have 
effects on the Fitts’s law slope; it was included here because we expected that its effects 
might interact with the possible effects of the first factor. Large differences due to the 
blocking factor would undermine the use for applied, design decisions of results obtained 
with blocked target conditions. In general, one might expect there to be differences across 
the four running conditions derived from these two factors based on two intuitively 
plausible ideas: that immediate experience with a specific movement will improve 
performance when that movement is repeated and that performance will be better on a 
movement when there is plenty of time to plan it.  

4.1. Movement Time versus Index of Difficulty 

The analysis for these data that does not include an accuracy adjustment is 
summarized in Figure 2 and Table 2. Because it is based on ID rather than IDe, this is not 
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the analysis that produces the best fit or the most easily interpreted results, nor is it the 
analysis recommended by either ISO 9241-9 (ISO 2002) or Soukoreff and MacKenzie 
(2004). However, as we have argued in the Introduction, the results of this analysis are 
important when predicting movement time in design applications where what would be 
known are the nominal rather than the effective target conditions.  

As in previous research (Fitts & Peterson, 1964; Guiard, 1997; Megaw, 1975, Expt. 
2) the slope relating MT and ID was larger (16%) for continuous movements than for 
discrete movements. There was, however, no slope difference comparing varied and 
blocked movement sequences.  

The intercept of the discrete movements were 130 ms larger (59%) than that of the 
continuous movements. Because the zero intercept is an extrapolation to a condition (ID 
= 0) that is of no practical interest and the zero-intercept estimates can be strongly 
influenced by error in the estimate of the slope, our preference is to compare the mean 
MT estimated at an ID value in the middle of the range of practically interesting ID value 
studied: in this case ID = 4. However, even using this measure there is still a significant, 
63 ms (9%) difference.  

From the perspective of ANOVA, the slope difference between the discrete and the 
continuous movements amounts to an interaction between ID and this factor. As Figure 2 
illustrates, continuous movements have lower MTs for the full range of ID values 
studied; however, the advantage of the continuous movements is reduced considerably 
for larger values of ID. Another way to characterize such an interaction is to look at 
simple-main effects. Within this framework, the significant result cited above for mean 
MT, can be considered a simple main effect for ID = 4. There is also a significant 
difference for ID = 2 ( = 96 ± 47 ms, t(11) = 4.511, p = 0.001), but not for ID = 6 ( = 
30 ± 50 ms, t(11) = 1.328, p = 0.211), although the difference is still in the same 
direction.  

Because there was no slope difference between the varied and blocked sequences, the 
mean MT and zero-intercept estimates were quite similar: the blocked sequences were 
about 22 ms faster than the varied sequences, a difference that is statistically reliable for 
the zero intercept but not for the mean MT. The direction of this difference is consistent 
with the expectation that repeating the same movement should lead to improved 
performance. 

4.2. Issues Interpreting Movement Time versus Index of Difficulty 

As would be expected, latency, the time to initiate a movement, was substantially 
longer for discrete than for continuous movements. Interestingly, there was not an overall 
latency difference between varied and blocked sequences. What might be a concern is 
that latency was found to depend on ID for discrete movements in varied sequences. 
Although this effect was only just barely reliable and relatively small 6 ms/bit (5% of the 
mean slope), it is worth considering because it is plausible that planning time, reflected in 
the latency, could be traded off for MT. 
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A larger and more direct concern is that a straightforward interpretation of the MT 
versus ID relationship only makes sense if error rates do not differ systematically across 
conditions. Unfortunately, although the average error rate was low in this experiment, 
1.7%, it did vary across the running conditions: there was a substantially smaller error 
rate for discrete movements. The was also a decrease in error rate as W got larger, and, 
what is more troubling, this decrease was substantially larger for continuous movements 
than for discrete movements. These results are troubling because they are consistent with 
a speed-accuracy tradeoff: when MT was smaller, error rate was larger. 

Consistent with the changes in error rate were the changes in sdx and thus We, the 
effective target width. ISO 9241-9 (ISO, 2000, Annex B, p. 29) specifies that We be 
calculated using a formula that was originally derived from information theory (see 
Welford, 1968, pp. 147-148): We = 4.133 sdx. The multiplier here is equivalent to 
assuming that the movement endpoints have a Gaussian distribution and that the error 
rate is about 4%. A Gaussian endpoint distribution has often been observed for similar 
data (Woodworth, 1899; Crossman, 1960; Fitts & Radford, 1966) and is a reasonable 
description here. Ideally, one might expect We to be proportional to W with a slope of 1. 
However, applying this formula, suggests that the We versus W slope is about 0.66 for the 
discrete movements, which is significantly less than 1, and 1.03 for the continuous 
movements. Both of these numbers would be a little higher if the multiplier in the 
equation for We were increased to 4.773 to reflect the 1.7% average error rate observed 
here instead of the 4% rate implied by the formula. However, looking past the specific 
slope estimates, what is important here is that participants responded more strongly to 
variation in W when making continuous movements than when making discrete 
movements. MacKenzie and Isokoski (2008) obtained similar variations in the response 
to variations in W using instructions intended to induce different speed-accuracy tradeoff 
points. 

 There was also a systematic increase in sdx associated with increasing D. However, 
even in the condition in which this slope was largest, the discrete-blocked condition, the 
associated changes in We were small from a practical perspective. For movements with D 
= 50, the expected reduction in We from the mean would be about 1 pixel, while for the 
movements with D = 800, the expected increase would be 2 pixels. 

4.3. Movement Time versus Effective Index of Difficulty 

Substituting We for W and thus using IDe to predict MT, produces results that are 
more consistent with the expectations outlined in the Introduction. Because this approach 
leads to more consistency between participants, the intercept difference and the 
difference in mean movement time between varied and blocked sequences are 
statistically reliable: introducing variation of target characteristics increased MT by about 
3.5%. At the same time, this analysis reduced the overall mean difference between 
continuous and discrete movements to a level that is no longer close to being reliable. 
The slope relating MT to IDe for continuous movements is, however, still larger (11%) 
than that for discrete movements. As for the analysis based on ID, this slope difference 
can be interpreted as an interaction. For ID = 2, discrete movements are significantly 
slower ( = 44 ± 36 ms, t(11) = 2.665, p = 0.022). As shown in Table 3, the difference at 
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ID = 4 (19 ms) is no longer reliable. For ID = 6, the effect is in the other direction, but 
again it is not statistically reliable ( = -6 ± 21 ms, t(11) = -0.313). 

If it is correct that the difference between discrete and continuous movements has its 
primary effect on the slope, but varying target characteristics influences only mean 
movement time, then this suggests that these factors influence different processes. This is 
a theoretically interesting idea. An important goal for future research would be to identify 
where in the movement process these differences are taking place. As discussed in the 
previous section, continuous and discrete movements differ in the way that they reflect 
changes in target width. However, an analysis based on IDe is intended to compensate for 
this difference, and yet the effects of both factors are still present. The stochastic 
optimized-submovement model (Meyer et al., 1988, 1990) suggests that another obvious 
place to look for the source of these differences is the velocity of the initial 
submovement. However, assuming that differences in initial submovement velocity are 
reflected in peak velocity, there was no evidence in these data for systematic differences 
across the running conditions. 

4.4. Practical Implications 

The Introduction raised three issues that are sources of potential concern for the way 
that results related to Fitts’s law are applied in HCI. The first of these is whether there is 
an important effect of varying target conditions between trials rather than blocking them. 
A priori this is an issue because blocking target conditions simplifies data collection, but 
in most applied situations target conditions vary from movement to movement. However, 
for mouse movements such as those studied here, the 24 ms additive increment in MT 
switching from blocked to varied target conditions is sufficiently small relative to the 
overall MT (3.5%) that, for most applications it might be seen as inconsequential. 
Another perspective from which to view this difference is that across the 12 participants 
in this study, the mean MT values, assessed at ID = 4, ranged from 583 ms to 806 ms. 
Given the restricted population (college students) included in this study, the upper end of 
this range is undoubtedly very small compared with that of a less restricted population. 
Yet the effect of blocking is only 10% of the variation across participants observed here. 
Because the small size of this effect was unexpected, it would be prudent to replicate it, 
both with the mouse and with other devices before taking it too seriously.  

The remaining two issues concern how data such as these should be analyzed and 
reported. The first of these involved the recommendation that IP be used to summarize 
results and compare conditions or devices. For a comparison of the varied versus blocked 
target conditions, this strategy works fine because there is little if any slope difference 
between these conditions. However, this approach is at best questionable for the 
comparison of the continuous versus discrete conditions. If IP is computed following the 
directions provided by Soukoreff and MacKenzie (2004), the means in each of the four 
running conditions are 5.76 ± 0.48 bits/ms in the discrete-varied condition, 6.02 ± 0.64 
bits/ms in the discrete-blocked condition, 5.58 ± 0.31 bits/ms in the continuous-varied 
condition, and 5.95 ± 0.40 bits/ms in the continuous-blocked condition. However, these 
averages collapse across significant IP differences that depend systematically on ID 
ranging from 4.1 bits/ms to 7.9 bits/ms; almost a 2 to 1 ratio. A three-factor ANOVA, 
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suggests that the effects of ID interact significantly with those of the two running 
conditions factors. These results make us uncomfortable with the recommendation that 
these comparisons be based on IP because it can obscure important differences in the 
results. Reporting only IP also strikes us as problematic, because for many applied design 
situations it is predicted movement time, not throughput, that is of interest. 

We believe that a better approach is one that does not force a one-dimensional 
simplification of what are inherently at least two-dimensional data. The approach we 
have illustrated here involves both reporting the two coefficients from Equation 1 and, 
where there are slope differences, reporting simple main effects at representative levels of 
ID. 

Comparing the results here with those previously reported comparing discrete versus 
continuous movements reveals a potentially interesting pattern. Using a mouse, we find a 
higher slope for continuous movements, but a lower intercept. The result is that the 
functions relating MT to IDe crossed at an ID of 5.5. Guiard (1997) also studied 
movements with a mouse-like device and also found that the functions crossed, in that 
case with an ID of 4.2. In contrast, although both studies reporting reciprocal tapping 
movements also found the slope for discrete movements to be larger than that for 
continuous movements, these studies obtained results in which discrete movements were 
substantially faster than continuous movements across the full range of ID values 
sampled: 2 bits to 7.6 bits in Fitts & Peterson (1964), 4.3 bits to 7.1 bits in Megaw 
(1975). Although this may reflect a fundamental difference between tapping and mouse 
movements, it could also reflect measurement differences associated with apparatus. In 
both tapping studies, a metal stylus was used to make movements that ended by hitting 
metal targets. This may have reduced measured dwell time, increasing the measured MT. 

The comparison of the discrete and continuous conditions may shed light on the final 
issue: when it is reasonable to base comparisons on analyses using ID versus IDe that was 
also raised in the Introduction. The two analyses we have reported agree that the slope is 
higher for discrete movement than for continuous movements. However, the two analyses 
differ substantially in their predictions about the size of the MT difference across levels 
of difficulty. If one followed the recommendation to use the predictions of Equation 1 
obtained using IDe and then substituted ID values obtained from a to-be-evaluated design, 
this would result in prediction errors of up to 50 ms. Although the fit of Equation (1) is 
better when IDe values are used, in this applied situation, more accurate predictions will 
be obtained using the fit of Equation 1 and ID values. In general, we believe that 
estimates from both fits should be reported. 

4.5. Conclusions 

This paper has explored three issues related to the application of research using Fitts’s 
law in HCI. The importance of these issues has been underscored by the recent, important 
efforts to standardize that research. We have argued along with Zhai (2004) that ISO 
9241-9 (ISO, 2000) needs to be amended to eliminate the recommendation that any one-
dimensional measure of performance be used to evaluate devices or user interfaces. As 
Equation (1) states, MT in these tasks reflects two dimensions of variation and any 
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attempt to collapse this onto one dimension will be misleading. We have also argued that, 
for some applications, fits of Equation (1) based on ID are more appropriate than those 
based on IDe. Finally, we have demonstrated that although movement-to-movement 
variation in target conditions results in longer MTs, this effect is much smaller than might 
have been anticipated. This is important both because it raises interesting theoretical 
issues and because it suggests that the large body of data collected with blocked target 
conditions may still be usefully applied to situations that commonly involve varied target 
conditions. DRAFT
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